
Narrow-band Topology Optimization
on a Sparsely Populated Grid

SIGGRAPH Asia 2018 Presented at TOP Webinar

Haixiang Liu*1 Yuanming Hu*2 Bo Zhu23 Wojciech Matusik2 Eftychios Sifakis1

1University of Wisconsin-Madison 2MIT CSAIL 3Dartmouth College
*equally contributed

?

Volume constraint

Minimal compliance
objective (deformation)

Linear FEM

Design domain : 3D density field (array) of values in [0,1]

[Sigmund, A 99 line topology optimization code written in Matlab]

Topology Optimization

FEM Solve
Density
Update

Grid Representation of Density

14 million voxels

…

HPC Cluster

8000 cores
[Aage et al. 2017]

1 billion voxels

…

Single GPU
[Wu et al. 2017]

Single Workstation

56 cores

Ours

1 billion voxels

2400

30
00

1600 (depth)

 1,040,875,347 active voxels (8.6%)
 11,520,000,000 background voxels (3TB memory)

Side view Back viewTop view

CPU
Physical
Memory

Page Table
&

TLB

Virtual memory

Physical memory

Virtual Memory System

Page table & mapping

Touched Unused

Sparsely Paged Grid [Setaluri et al. 2014]
Virtual memory Physical memory

Sparse blocks of 4x4x8 nodes
Up to 3.1x acceleration

Narrowband tracking

Narrowband Evolution

Filter

Evolve &
Shrink

Expand

MGPCG Time Complexity: O(n)

Level 1

Level 2

Level 3

Restrict

Restrict

Prolongate

Prolongate

Smooth

Smooth

Smooth Smooth

Smooth

Multigrid FEM Solver

Aggressively Optimized Multigrid FEM Solver

Optimized fine-level operator

Matrix-free Galerkin-coarsened operator construction

Improved eight-color Gauss-Seidel smoother
…

CPU

Float point unit
2xFMA a x b + c

Physical
Memory

Page Table
&

TLB

a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x
a

b

=
x

a

b
=

x
a

b
=

x

d d d d d d d d

c c c c c c c c
+ + + + + + + +

a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x
a

b

=

x

d d d d d d d d

c c c c c c c c
+ + + + + + + +

4.2G Hz x 2 FMA/cycle x 16 FLOPS/FMA x 4 cores = 538G FLOPs

Vectorization &
Fused multiply and add (FMA)

Fine Level Stiffness Operator

Ku = f

Matrix-Free

Stiffness matrix

External force

Nodal displacement (Unknown)

2x242=1,152 vectorized FMA inst. per node

Block 2

Block 3

Block 1

Block 4

Fine Level Stiffness Operator

Fine Level Stiffness Operator

Execution Engine
4.20 GHz

134.4 G FLOP/s, i.e. 806.4 GB/s bandwidth requirement

L1 data cache 32KB
403.2 GB/s

4 cyc latency

L2 cache 256KB
268.8 GB/s

12 cyc latency

L3 cache 2M/core
134.4 GB/s

42 cyc latency

Main Memory
35.8 GB/s

256 cyc latency

L1 Data TLB
4 KB pages - 64 entries

2/4 MB pages - 32 entries
1G pages - 4 entries

L2 Unified TLB (STLB)
4 KB/2MB pages - 1536 entries

1G pages - 16 entries

Vector Physical Registers
 32 byte entries, 168

entries
1 cyc latency

Integer Physical Registers
8 bytes per entry, 180

entries
 1 cyc latency

* Figures are not drawn to scale.
* Instruction caches are omitted.
* Main memory BW is shared by all

cores.

(Part of) the Memory Hierarchy

CPU core

closer to CPU,
smaller capacity,

lower latency,
higher bandwidth.

Fine Level Operator

SIMD Gather is expensive

Access pattern is regular
Blend is cheap

Level 1

Level 2

Level 3

Restrict

Restrict

Prolongate

Prolongate

Smooth

Smooth

Smooth Smooth

Smooth

Matrix-Free Galerkin Coarsening

K2h = R2h→h Kh Ph→2h

Top level is matrix free

Matrix-matrix multiply is memory bound

Matrix-Free Galerkin Coarsening

Matrix-Free Galerkin Coarsening

K4hei = R2h→4hRh→2hKhPh→2hP2h→4h ei

ei

Matrix-Free Galerkin Coarsening

P2h→4h ei

Ph→2hP2h→4h ei

i

K4hei = R2h→4hRh→2hKhPh→2hP2h→4h ei

Recursive algorithm
Stack allocated variables

Cell material is read once/level
Total time: 113.9 sec for 1.04 Billion voxels

~1.26 TFLOPS on Skylake SP

Matrix-Free Galerkin Coarsening

Modified Eight-Color Gauss-Seidel Smoother

 Coupled Diagonal Smoothing

 Shuffled Data Storage

CPU

Float point unit
2xFMA a x b + c

Physical
Memory

Page Table
&

TLB

L1 Cache L2 Cache L3 Cache

CPU

Float point unit
2xFMA a x b + c

Physical
Memory

Page Table
&

TLB

L1 Cache L2 Cache L3 Cache

CPU talks to caches in the unit of 64B cachelines.

Modified Eight-Color Gauss-Seidel Smoother
Original Data Layout Shuffled Data Layout

64-byte Cacheline

 Comparing to matrix-free multiply

 same amount memory access but 1/8 computation
 Memory bound

Modified Eight-Color Gauss-Seidel Smoother

 Effective bandwidth: 68GB/s (out of 120 GB/s)

Bicycle Wheels
53.56M voxels
984x984x204 background grid
1% volume fraction
~65 TopOpt iterations

: Dirichlet boundary : loads

Plane Wing
401.53M voxels
1696x342x1971 background grid
20% volume fraction
43 TopOpt iterations

Fixed boundary

Surface forces

Side viewTop view

Cut-away view

Summary:

1. Use a sparse grid to compactly store irregular geometry
2. Track the evolution of the structure using a narrowband
3. Do aggressive low-level optimization to speed up FEM solve

…and parallelism.

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Moore’s law continues

Single-core performance
stops growing

Instead of “better” cores,
we have “more” cores

(with wider SIMD)

Conclusion

Performance in numerical computation is mostly about data.
Good data layout and effective vectorization are keys to performance.

We need better language & compiler to reduce the development cost
 for high-performance computer graphics.

Narrowband domain evolution

Optimized fine-level operator

Matrix-free Galerkin-coarsening

SPGrid-specific sparse matrix storage

Improved eight-color Gauss-Seidel smoother

Mixed-precision scheme

Data Layout:

Vectorization & Data Layout:

Vectorization:

Data Layout:

Vectorization & Data Layout:

Vectorization & Data precision:

…and we did write a compiler for that!

Write high-performance CPU/GPU solvers on sparse grids, in a
programming language like Python!

https://github.com/taichi-dev/taichi

Taichi: a language for high-performance
computation on spatially sparse data structures

(SIGGRAPH Asia 2019)

https://github.com/taichi-dev/taichi

Particles 1x1x1

4x4x4 16x16x16

43

Thanks!
Questions are welcome!

Code: https://github.com/yuanming-hu/spgrid_topo_opt

https://github.com/yuanming-hu/spgrid_topo_opt

