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Abstract

Using traditional programming languages such as C++ and CUDA, writing high-
performance visual computing code is often laborious and requires deep expertise
in performance engineering. This implies an undesirable trade-off between per-
formance and productivity. Emerging visual computing workloads such as sparse
data structure operations, differentiable programming, and quantized computa-
tion, lead to further development difficulties with existing programming systems.
To address these issues, we propose Taichi, an imperative and parallel program-
ming language, tailored for developing high-performance visual computing sys-
tems. Taichi leverages domain-specific features of visual computing tasks, pro-
viding first-class abstraction and support for spatially sparse computation, differ-
entiable programming, and quantization. With Taichi’s optimizing compiler that
has a high-level understanding of these domain-specific language constructs and
automatically optimizes Taichi programs, we achieve performance and productiv-
ity simultaneously in various visual computing tasks, especially physical simula-
tion. For example, with Taichi we can easily achieve 4.55× higher performance
using 1/10 lines of code on sparse computations, effortlessly develop 10 differen-
tiable physical simulators, and simulate unprecedented 235 million material point
method (MPM) particles on a single GPU.
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Chapter 1

Introduction

From image processing and realistic rendering to physical simulation and VR/AR,

visual computing tasks are nowadays everywhere, bridging the physical and digital

world. However, visual computing often demands extremely high performance to

process massive visual data such as images, videos, particles, and volumes. Re-

searchers and developers have devoted tremendous efforts to designing and op-

timizing the hardware (multicore CPUs, massively parallel GPUs, and DSPs), soft-

ware (e.g., renderers and physical simulators), and algorithms (such as fast Fourier

transform [24] and multigrid methods [118]) for visual computing problems. This

dissertation is focused on the software development part.

1 Why a new programming language for visual com-

puting?

Well-optimized visual computing software systems are often implemented in lan-

guages such as C++ and CUDA, which are close to computing hardware and

offer possibility to achieve high efficiency. Unfortunately, simply using (without

further optimizations) a close-to-hardware language is often not enough for perfor-

mance. The need for high resolution and real-time performance of visual com-

puting tasks usually implies tedious and challenging performance engineering, to

15



make a working system run more efficiently. A heavily performance-engineered

visual computing program can sometimes run one order of magnitude faster than

a reasonable C++/CUDA implementation. For example, a particle-to-grid splat-

ting kernel of the moving least squares material point method ([48]), when prop-

erly engineered, can run 7× faster than a normal implementation using the same

C++ programming language and computing hardware. The performance improve-

ment comes from 4-wide vectorization using SSE and implementing a software-

defined local scratchpad that caches frequent grid node data from the global sparse

grid in the L1 data cache.

At a high level, these traditional programming languages tend to suffer from a

tension between productivity and performance. C++ and CUDA themselves are

not the easiest languages to learn. To enable a direct mapping to hardware and

zero-cost abstractions [114], C++ offers advanced features such as template meta-

programming, yet the need to master these features further poses an even higher

barrier for programmers. Moreover, to develop a high-performance visual com-

puting system, developers need a deep understanding of how a C++ program is

compiled and how processors work. In one word, a basic C++ program typically

does not lead to good enough visual computing performance on its own, while

performance engineering techniques, such as vectorization, loop unrolling, accel-

erating data structures, transforming data layouts, and data field compression, can

easily lead to code that is hard to read, maintain, and debug.

At the same time, traditional high-performance languages usually lack porta-

bility and tend to tie implementation to specific accelerators (e.g., multi-thread

CPUs and massively parallel GPUs). For example, C++ ties implementations to

CPUs, while CUDA ties to NVIDIA GPUs. This is undesirable, since visual com-

puting can happen everywhere, from workstations with high-end GPUs to mobile

devices without programmable graphics hardware where software has to fall back

to CPUs. We need a portable system that can deploy the same piece of code on

various platforms.

Beyond the issues with productivity, performance, and portability that have ex-
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isted for decades, there are emerging types of workloads that further complicate

programs written in these traditional languages. For example,

• 3D visual data are often spatially sparse, and sparse data structures are key to

achieving high performance in those cases. However, programming spatially

sparse computation is hard with traditional languages, even with the help of

a mature data structure library.

• The rise of deep learning motivated researchers to make visual computing

components differentiable, while neither C++ nor CUDA natively supports

differentiable programming.

• Saving memory bandwidth and space using low-precision (quantized) data

types becomes an effective way to improve resolution and performance, as

a) the gap between processor throughput and memory bandwidth enlarges,

and b) general-purpose GPUs with hard limits on memory space become

predominant. Programming visual computing systems with low-precision

and quantized data types while achieving high performance needs special

language and compiler support that does not exist in traditional languages.

In a nutshell, substantial redesign of languages and compilers is needed to alle-

viate the tension between productivity and performance, make visual computing

systems more portable, and more importantly, serve emerging computation pat-

terns in visual computing.

2 The Taichi programming language

To address the aforementioned issues, we propose the Taichi programming lan-

guage. Taichi aims to be both productive and performant on traditional and emerg-

ing visual computing workloads, by providing domain-specific language abstrac-

tions and compiler optimizations. Its portability is achieved via multiple compila-

tion backends including x64, ARM, CUDA, Metal, OpenGL compute shaders, and

even Javascript.
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Scope Although Taichi aims to cover visual computing tasks as widely as pos-

sible, some types of computation are outside the scope of Taichi: 1) tasks with

domain-specific hardware support, and 2) coarse-granularity tasks, where func-

tion call overheads and data transfer time are negligible, with well-optimized li-

braries. For example,

• Classical rendering tasks, with rasterization and ray tracing hardware sup-

port. Real-time graphics APIs such as OpenGL, DirectX, and Vulkan are often

good enough.

• Video encoding/decoding, often done by hardware video codec.

• Deep neural networks with standard layers such as convolution and batch

normalization [55], as well-solved by deep learning frameworks such as Ten-

sorFlow [2].

While Taichi is not designed for these workloads, we do need to consider the

communication between Taichi and other parts of the visual computing system.

Well-designed zero-copy APIs are often good options. For example, it would be

helpful to let OpenGL vertex shaders (for rendering) directly read from the buffers

with data from compute shaders compiled by Taichi (for simulation). Another

good example is Taichi’s PyTorch interface allows (differentiable) Taichi programs

to interact with PyTorch for a close integration of deep neural networks and nu-

merical computation kernels.

Goals The Taichi project has two high-level goals:

1. Simplify the process of high-performance visual computing system develop-

ment and deployment;

2. Explore novel language abstractions and compilation approaches for visual

computing.
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In the next section only, we will briefly cover our work towards the first goal,

as an overview of the engineering aspects of the Taichi system. The majority of

this dissertation will be focused on the second goal, namely the novel language

abstractions and compilation approaches, which are the research contributions.

3 Pragmatic design decisions

Before diving into the research contributions, we summarize the software engi-

neering aspect of the Taichi system. The goal of these pragmatic design decisions

is to make Taichi easier to use by end-users. We devoted a huge amount of engineering

efforts on the Python frontend and compatibility across platforms1.

The compilation workflow is depicted in Figure. 1-1. Key design decisions of

Taichi are discussed below.

Figure 1-1: Life of a Taichi kernel. Python ASTs are progressively lowered into
high-performance executable kernels that run on CPUs and GPUs. Domain-
specific transformation and optimization passes ensure run-time performance.

1Alghough this dissertation will not cover these real-world engineering details beyond this sec-
tion, readers are welcome to check out the Taichi project on GitHub for more details on how the
system is engineered.
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Imperative. Graphics programs, especially physical simulation, are usually com-

putation hungry and need imperative programming, which is closer to hardware

compared to functional programming, to extract the maximum possible perfor-

mance out of parallel processors. Another motivation to stick to imperative pro-

gramming, is to preserve maximum compatibility with existing graphics algo-

rithms: easy control flow ( if , for , while, continue, break) are supported in Taichi,

and all data buffers (“ fields ”) are mutable and can be in-place modified.

Programmable megakernels. Taichi uses a “megakernel” programming approach,

allowing the programmer to naturally (and sometimes aggressively) fuse multiple

stages of computation into a single kernel. Compared to composing the compu-

tational graph using element-wise linear algebra operators (“Op”s, as in Tensor-

Flow [2] and PyTorch [96]), Taichi kernels have a higher arithmetic intensity (i.e.,

number of floating-point operations per byte fetched) and are therefore more effi-

cient for visual computing tasks.

Embed in Python. Python is easy to learn and widely adopted, the frontend syn-

tax of Taichi is a subset of Python. This allows every Python programmer to easily

learn Taichi. Embedding Taichi in python also has the following advantages:

• Easy to run. Compared to embedding in a compiled language (such as C++),

no ahead-of-time compilation of the container language is needed to run a

Taichi kernel, since Python is interpreted.

• Easily reuse and interact with existing Python infrastructure, including IDEs,

package manager (pip), and existing Python packages such as matplotlib and

numpy.

We leverage the flexible AST inspection and manipulation features of Python to

convert a Python function into a Taichi frontend AST, which is later compiled to

high-performance kernels.
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Compile just-in-time (JIT). JIT not only provides great programming flexibility,

but also delays the need of “compile-time constant” values. For example, ∆𝑡 in

physical simulators is often a runtime variable in ahead-of-time compilation, but

with JIT, ∆𝑡 would be a compile-time constant. This allows the compiler to do

more optimizations such as constant folding. Meanwhile, Taichi supports tem-

plate metaprogramming with on-demand JIT compilation, saving the compiler

from doing unnecessary compilation. We also provide ahead of time compilation,

especially for mobile computing environments.

Data-orientated design. As visual computing applications are often limited by

memory bandwidth, we adopt the data-oriented design philosophy (see, for exam-

ple, [4, 73]) instead of traditional object-oriented design. This allows us to improve

cacheline utilization and cache hit rate. Also note that Taichi decouples data layout

from computation, as we show in chapter 2.

All these design decisions combined, Taichi is becoming a piece of computing

infrastructure welcomed by many visual computing researchers and developers,

who wish to write high-performance (GPU) code in the Python environment. As of

March 2021, it has been downloaded 500, 000 times and has 12.9𝐾 stars on GitHub.

Taichi is now developed by over 60 developers across the world. In production

environments, Taichi powers the fluid simualtion engine in the Kuaishou app, a

popular video sharing platform with over 500,000,000 daily active users (Fig. 1-2).

A simple Taichi program is shown in Figure. 1-3. For more details on the syn-

tax of the Taichi programming language, please check out our Taichi course on

SIGGRAPH 2020 [46].
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Figure 1-2: A real-time GPU physics-based AR effect in the Kuaishou mobile app.
A single piece of Taichi fluid simulation code compiles to Metal and OpenGL com-
pute shader code simultaneously, powering both iOS and Android platforms. A
user can freely rotate a smartphone to control the fluid motion via gravity.

4 Domain-specific language abstractions and tailored

optimizing compilers

Exploring novel language abstractions and compilation approaches for visual comput-

ing is the focus of this dissertation. The fundamental reason why Taichi can achieve

both high performance and high productivity, is because Taichi provides domain-

specific language abstractions as first-class citizens, and the Taichi compiler can

then conduct domain-specific optimizations automatically. Note that in general-

purpose languages such as C++ and CUDA, programmers have to conduct these

optimizations manually. This is because the domain-specific language constructs

will be lowered into the general-purpose intermediate representation (IR) used by

these compilers, which may not be suitable for the analysis and optimization of

domain-specific operations that are often used in visual computing.

The power of domain-specific IR and compilers We use spatially sparse pro-

gramming (chapter 2) as a motivating example to demonstrate the advantage of

a domain-specific compiler over a general-purpose compiler. Similar logic partly
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Figure 1-3: A simple Taichi program (left) generating a fractal animation (right).
Taichi lives in the Python scripting language and is very easy to learn, especially
for those who are familiar with Python. Our compiler and runtime system effi-
ciently executes intense computation (such as the “paint” kernel) on parallel de-
vices such as GPUs.

applies to the quantization system (chapter 5).

When computing on a multi-level sparse data structure such as VDB [89], data

accesses to the voxels happen layer-by-layer, from the root node to the leaf node of

the data structure tree. It is often the case that in a single loop iteration, neighbor-

ing voxels are accessed, for example, when applying a stencil operation to a sparse

grid. A performance-aware programmer will usually try to merge common paths

on the tree structure manually (Fig. 1-4).

Figure 1-4: An experienced programmer may sacrifice code readability and decom-
pose data structure accesses on the tree, to merge redundant memory addressing.
Note that on sparse data structures memory addressing may involve looking up an
expensive hash table, so optimizing it can lead to a significant performance gain.

There are many ways for a compiler to internally represent these data struc-
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ture accesses (Fig. 1-5), but only some of them are suitable for such optimization.

General-purpose compilers usually use LLVM [72] IR (or some other IR at a simi-

lar granularity), which is too fragmented for the compiler to have a concise under-

standing of the underlying semantics. In Taichi we have an IR stage that is tailored

for these domain-specific access optimizations, allowing the compiler to do auto-

matically what used to be done by experienced performance engineers (Fig. 1-6).

Turning off these domain-specific optimizers and leaving all the optimization job

to a general-purpose compilation backend (such as gcc, clang or LLVM), leads to

programs that run 3.01× slower on average (geometric mean, source: Table 4.1).

Figure 1-5: The same operation represented in different IRs. Finer granularity often
means more instructions.
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Figure 1-6: IR with too coarse granularity hides optimization opportunities, yet
one that is too fragmented is hard to analyze. Only a granularity that lies at a sweet
spot in this trade-off, opens up the most space for domain-specific optimizations.

5 Dissertation overview and research contributions

This dissertation is organized as follows, where each chapter presents a research

contribution.
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In chapter 2, we present the initial version of the Taichi programming lan-

guage, focused on spatially sparse computation. Since 3D visual computing of-

ten involves complex sparse data structures, we propose a new data-oriented pro-

gramming language based on Taichi, for efficiently authoring, accessing, and main-

taining 3D sparse data structures. The language offers a high-level, data structure-

agnostic interface for writing computation code. The user independently specifies

the data structure. This decoupling of data structures from computation makes it

easy to experiment with different data structures without changing computation

code, and allows users to write computation as if they are working with a dense

array. Our compiler conducts domain-specific optimizations on sparse computa-

tion code. With 1
10

th as many lines of code, we achieve 4.55× higher performance

on average, compared to hand-optimized reference implementations. This work is

published at SIGGRAPH Asia 2019 [49].
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Figure 1-7: (Top) We expose a high-level interface for developing and processing
spatially sparse multi-level data structures, and an optimizing compiler that au-
tomatically reduces data structure overhead. Programmers write code as if they
are accessing dense voxels, while specifying the data arrangement independently.
Our compiler automatically generates optimized, high-performance code tailored
to the data structure. This results in concise code and better performance than
highly-optimized reference implementations for various tasks. (Bottom) A fluid
simulation using the material point method. We used a three-level sparse voxel
grid with sizes 13, 43, 163. Involved voxels are visualized in green. Both simulation
and rendering are done using programs written in Taichi.
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Chapter 3 details a novel two-scale differentiable programming system to the

Taichi programming language (DiffTaichi). Inside Taichi kernels, DiffTaichi gen-

erates gradient kernels using source code transformations, which preserves arith-

metic intensity (i.e., number of floating-point operations per byte fetched) and par-

allelism. Outside kernels, a light-weight tape is used to record the kernel launch-

ing information and replay the corresponding gradient kernels in a reversed order,

for end-to-end backpropagation. A differentiable elastic object simulator written

in DiffTaichi is 4.2× shorter than the hand-engineered CUDA version yet runs as

fast, and is 188× faster than the TensorFlow implementation. Using our differen-

tiable programs, neural network controllers are typically optimized within only

tens of iterations (Fig. 1-8). DiffTaichi is published at ICLR 2020 [47].

Figure 1-8: Left: The DiffTaichi system. Right: 10 differentiable simulators written
in DiffTaichi.
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To better optimize Taichi programs, we developed an inter-kernel optimiza-

tion system, with an asynchronous execution engine (chapter 4). Inter-kernel

optimization is especially relevant for tasks beyond traditional dense arrays com-

putation, as exhibited by modern computer graphics and machine learning work-

loads, such as physical simulation with spatial sparsity and automatic gradient eval-

uation via differentiable programming. We show that these emerging computational

patterns lead to new and exciting automatic optimization opportunities. With-

out any computational code modification, our new system leads to 4.02× fewer ker-

nel launches and 1.87× speed up on our GPU benchmarks, including sparse-grid

physical simulation and differentiable programming (Fig. 1-9).

Figure 1-9: Top left: In existing parallel imperative programming systems (such as
CUDA and the synchronous version of Taichi [49]), imperative computational ker-
nels are eagerly launched, leaving a tiny room for the optimizer to optimize beyond
a single kernel. Bottom left: In our new system (chapter 4), we accumulate kernels
in an execution buffer, only flushing the execution queue when necessary. This al-
lows the optimizer to gain more context and conduct optimization beyond a single
kernel. We dynamically build a dependency graph (“state-flow graph") of kernels
for easy analysis, so that computation kernels can be optimized at an inter-kernel
level just in time. Right: After a suite of domain-specific optimization passes in-
cluding list generation removal, sparse data structure activation elimination, and
kernel fusion, kernels are much better optimized. As a result, the inter-kernel op-
timized programs run 1.87× faster on GPUs, without the user modifying any of the
computation code.
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Finally, the quantization system of Taichi is introduced in chapter 5. We

present a set of language abstractions and compiler optimizations that can achieve

both high performance and significantly reduced memory costs, by enabling flexi-

ble and aggressive quantization. Low-precision (“quantized”) numerical data types

are used and packed to represent simulation states, leading to reduced memory

space and bandwidth consumption. Our programming language and compiler,

based on Taichi, allow developers to effortlessly switch between different full-precision

and quantized simulators, to explore the full design space of quantization schemes,

and ultimately to achieve a good balance between space and precision. For exam-

ple, on a single GPU, we can simulate a Game of Life with 20 billion cells, an Eule-

rian fluid system with 421 million active voxels, and a hybrid Eulerian-Lagrangian

elastic object simulation with 235 million particles (Fig. 1-10). This work is published

at SIGGRAPH 2021 [50].

Figure 1-10: The Taichi quantization system (chapter 5) enables programmers to
easily use low-precision and quantized data types for high-resolution simulations
with reduced memory consumption.
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Chapter 2

Programming with Spatial Sparsity

3D visual computing data are often spatially sparse. To exploit such sparsity, peo-

ple have developed hierarchical sparse data structures, such as multi-level sparse

voxel grids, particles, and 3D hash tables. However, developing and using these

high-performance sparse data structures is challenging, due to their intrinsic com-

plexity and overhead. We propose Taichi, a new data-oriented programming lan-

guage for efficiently authoring, accessing, and maintaining such data structures.

The language offers a high-level, data structure-agnostic interface for writing com-

putation code. The user independently specifies the data structure. We provide

several elementary components with different sparsity properties that can be arbi-

trarily composed to create a wide range of multi-level sparse data structures. This

decoupling of data structures from computation makes it easy to experiment with

different data structures without changing computation code, and allows users to

write computation as if they are working with a dense array. Our compiler then

uses the semantics of the data structure and index analysis to automatically op-

timize for locality, remove redundant operations for coherent accesses, maintain

sparsity and memory allocations, and generate efficient parallel and vectorized

instructions for CPUs and GPUs.

Our approach yields competitive performance on common computational ker-

nels such as stencil applications, neighbor lookups, and particle scattering. We

demonstrate our language by implementing simulation, rendering, and vision tasks
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Figure 2-1: (Top) We propose the Taichi programming language, which exposes a
high-level interface for developing and processing spatially sparse multi-level data
structures, and an optimizing compiler that automatically reduces data structure
overhead. Programmers write code as if they are accessing dense voxels, while
specifying the data arrangement independently. Our compiler automatically gener-
ates optimized, high-performance code tailored to the data structure. This results
in concise code and better performance than highly-optimized reference imple-
mentations for various tasks. (Bottom) A fluid simulation using the material point
method, where two liquid jets collide with each other, forming a thin sheet struc-
ture. We used a three-level sparse voxel grid with sizes 13, 43, 163. Involved voxels
are visualized in green. Both simulation and rendering are done using programs
written in Taichi.

including a material point method simulation, finite element analysis, a multi-

grid Poisson solver for pressure projection, volumetric path tracing, and 3D con-

volution on sparse grids. Our computation-data structure decoupling allows us

to quickly experiment with different data arrangements, and to develop high-

performance data structures tailored for specific computational tasks. With 1
10

th as

many lines of code, we achieve 4.55× higher performance on average, compared

to hand-optimized reference implementations.
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1 Introduction

Large-scale 3D simulation, rendering, and vision tasks often involve volumetric

data that are spatially sparse. Hierarchical and sparse data structures have been

studied extensively to effectively exploit such sparsity. For example, in fluid sim-

ulation (Fig. 5-1), a multi-level grid is often used to represent the fluid field, where

the fluid’s spatial sparsity can be represented by nesting hash tables, bitmasks, or

pointer arrays at different levels of the grid.

Writing high-performance code for these data structures is a daunting task due

to their irregularity. Accessing their active elements in parallel imposes several

engineering challenges (Fig. 2-2). First, naively traversing the hierarchy can take

one or two orders of magnitude more clock cycles than the essential computation.

This is especially troublesome for spatially coherent accesses commonly seen in,

for example, stencil operations, since common access paths in the hierarchical data

Sparse Data Structure
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Vector Register

vectorized write

y[i] = x[i-1] + x[i] + x[i+1]
For each i:

Figure 2-2: Accessing a multi-level sparse array is significantly more involved than
accessing a dense array. The figure illustrates an example three-level sparse array
and the read and write access of a stencil y[i]=x[i−1]+x[i]+x[i+1]. Naive code
is usually inefficient, since the hierarchy makes traversal costly, and it is especially
problematic for spatially coherent accesses, where the top of the traversal is often
redundant. Optimized and vectorized code needs to leverage access locality to
amortize the access cost, check for sparsity, handle boundary cases, and allocate
memory when necessary. Writing code for these accesses is tedious and error-
prone, and it often leads to code that is highly-coupled with the data structure.
Our language decouples the data structure implementation and the access, while
our compiler automatically generates optimized code given the access pattern and
the specific data structure. As a result, users write code as if they are accessing
dense arrays, while having the freedom to change the data layout and sparsity
representation without affecting the computation code.
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Figure 2-3: Traditionally, a user who writes data structure access code faces a
dilemma between easy programming and high performance. The goal of our lan-
guage is to achieve both the productivity of a high-level library and the high per-
formance of manually optimized code. Furthermore, since our language makes
it easy to experiment with different data structures, users can often achieve even
higher performance by exploring the data structure design space and adopting the
most efficient design for a given task.

structure are traversed redundantly. Second, we need to ensure load-balancing for

efficient parallelization. Third, we need to allocate memory and maintain sparsity

when accessing inactive elements.

Data structure libraries do not guarantee high-performance code, since perfor-

mance is not easily composable. Multiple calls to the library interface will result

in redundant and costly traversals of the hierarchy. Unfortunately, because of the

code complexity of these data structures, and potential race conditions and pointer

aliasing, current general-purpose compilers often fail to optimize between library

function calls. To achieve high performance, libraries usually have to expose low-

level interfaces to users, leading to a leaky abstraction, making computation code

highly coupled with data structures. We propose a new programming model that
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decouples data structures from computation, to achieve both high performance and

easy programming (Fig. 5-2). Users write computation code using a high-level

and data-structure-agnostic interface, as if they are operating on a dense multi-

dimensional array. The internal data arrangement and the associated sparsity

are specified independently from the computation code by composing elementary

components such as dense arrays and hash tables to form a hierarchy.

Our compiler tailors optimizations for the specified data structure components,

and generates efficient sparsity and memory maintenance code. We develop sev-

eral domain-specific strategies for optimizing spatially-coherent accesses, using in-

dex analysis derived from high-level information about the data layout and the

access patterns. Our compiler analyzes accesses to efficiently compute memory

addresses, uses a caching strategy for better locality, and parallelizes/vectorizes

loops from high-level instructions from the programmer. This is enabled by our

compact intermediate representation, specially designed for optimizing hierarchi-

cal sparse data structures. Our compiler generates C++ code or CUDA code from

the intermediate representation, making switching backends effortless.

On many common computations such as stencils, neighbor lookups, and par-

ticle splatting, our compiler generates code faster than highly-optimized reference

implementations. We implement several popular simulation, graphics and vi-

sion algorithms in our language’s embedded C++ frontend, including the material

point method [112, 35, 48], finite element kernel [79], multigrid Poisson solver [86],

sparse 3D convolution [37], and volumetric path tracing. Compared with highly-

optimized reference implementations, our code requires on average only 1
10

th the

number of lines of code, while being 4.55× faster (geometric mean).

We can quickly explore different choices of data structures, while our compiler

generates high-performance code. For example, we derived more efficient data

structure designs for the material point method that not only lead to performance

improvements of up to 1.2× over previous, highly-optimized, state-of-the-art im-

plementation [35], but also simplify the whole algorithm (Sec 6 .1).

Our model can express a wide variety of data structures used in physical sim-
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ulation and rendering. In particular, it can describe different multi-level sparse

grids (e.g. SPGrid [110], OpenVDB [89], and other novel data structures), particles,

and dense and sparse matrices. We assume the hierarchy is known at compile-time

to facilitate compiler optimization, therefore we do not directly model structures

with variable depth such as k-d trees.

Our language and compiler are open-source1. All performance numbers from

our system in this paper can be reproduced with the provided commands. All

visual results are simulated and rendered using programs written in our language.

We summarize our contributions as follows:

• A programming language that decouples data structures from computation

(Sec. 3 .1). We provide a unified abstraction to map multi-dimensional in-

dices to memory addresses. Such an abstraction allows programmers to de-

fine computation independently of the internal arrangements of the involved

data structures.

• A data structure description mini-language, which provides several elemen-

tary data structure components that can be composed to form a wide range

of sparse arrays with static hierarchies (Sec. 3 .2).

• An optimizing compiler that uses index analysis and information from the

data structures to automatically optimize for locality, minimize redundant

operations for coherent accesses, manage sparsity, and to generate paral-

lelized and vectorized backend code for x86_64 and CUDA (Sec. 5 and Sec. 6

).

• A thorough evaluation of our system, and state-of-the-art implementations

of several graphics and vision algorithms as by-products.

1https://github.com/taichi-dev/taichi
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2 Goals and Design Decisions

Most sparsity patterns in 3D computing tasks exhibit spatial coherency (Figure 2-

4). The sparsity may come from fluid simulation, clouds in volume rendering,

or point clouds of surfaces from LiDAR and Kinect scans. To obtain high per-

formance, we want to model the spatial sparsity effectively so we can utilize the

spatial coherency while not wasting computational resources on empty space.

Figure 2-4: Left: We focus on spatial sparsity, where the data is globally sparse yet
locally dense; Right: General sparse problems with random patterns are less suited to
our language.

We aim to develop a high-performance programming language to exploit spa-

tial sparsity using dedicated data structures. The four high-level goals are as fol-

lows:

Expressiveness Our target applications often feature complex computational ker-

nels, such as stencils of different sizes, particle splatting, and ray-voxel intersec-

tion. Therefore, the language should be expressive enough to cover these numer-

ical computation patterns. Taichi allows users to read/write to arbitrary elements

in the sparse data structures, and provides constructs for branching and looping.

This distinguishes our languages from more domain-specific ones, such as taco [67]

(linear algebra).
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Performance On modern computer architectures, achieving high performance

means good exploitation of locality and parallelism. However, the desired memory-

friendly and parallel data structure is usually task- and hardware-dependent, so

existing data structure libraries that only provide a single data structure design do

not completely solve the performance issue.

Productivity Traditionally, programming on sparse data structures requires man-

ually handling memory allocation, parallelization, exceptions and boundary con-

ditions. Even with libraries, low-level programming is still necessary to achieve

high performance. Our language allows programming on sparse data structures

as if they are dense, while the compiler automatically generates optimized code. To

our knowledge, Taichi is the first system that makes it possible to write large-scale

physical simulations on complex data structures within only a few hundred lines

of code.

Portability The language should automatically generate optimized code for dif-

ferent hardware environments. We do not offer programmer access to low-level

control over hardware when it would sacrifice performance portability, like the

prefetch intrinsics on x86 CPUs or warp-level intrinsics on NVIDIA GPUs.

2 .1 Design Decisions

Our design decisions are made based on the aforementioned goals and non-goals.

• Decouple data structures from computation. The user should write high-

level code for computation as if they are processing a dense array, while also

being able to explore different sparse data structures without affecting the

computation code. We achieve this by abstracting data structure access with

Cartesian indexing, while the actual data structures define the mapping from

the index to the actual memory address (Sec. 3 .1).
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• Regular grids as building blocks The basic data structure entities of our sys-

tem are regular grids, which can be easily flattened into 1D arrays that map

closely to modern computer architecture with linear memory addressing. We

do not directly model more irregular structures such as meshes or graphs2.

Multiresolution representations such as adaptive grids [82] need to be com-

posed manually in our language (see Section 6 .3, or Setaluri et al.’s multigrid

preconditioner [110]).

• Describe data structures through hierarchical composition. To model spa-

tial sparsity, and to express a wide variety of data structures, we develop a

data structure mini-language to compose data structure hierarchies (Sec. 3

.2). The mini-language is made up of several elementary components, such

as dense arrays and hash tables, that are arbitrarily composable.

• Fixed data structure hierarchy. We facilitate compiler optimizations and

simplify memory allocation by assuming the hierarchy to be fixed at com-

pile time. We do not support octrees or bounding volume hierarchies with

dynamic depth. Many state-of-the-art physical simulation systems use data

structures with a fixed hierarchy such as SPGrid [110] and VDB [89, 41].

• Single-Program-Multiple-Data (SPMD) with sparse iterators. We adopt an

imperative SPMD model to harness the power of modern hardware such as

vectorized instructions on CPUs and massively parallel GPUs. To exploit

sparsity, we design computation kernels to be parallel for loops with sparse

iterators on active elements only. This provides programmers a simple yet

expressive interface to sparse computation.

• Generate optimized backend code automatically. Our compiler should gen-

erate high-performance backend code automatically, while optimizing for

locality (Sec. 4 .1), minimizing redundant accesses using access coherency

(Sec. 4 .2), automatically parallelizing (Sec. 4 .3) and allocating memory (Sec. 5

2It is possible to use 1D arrays for storing vertices and edges in meshes/graphs.
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.2). The user should only need to provide the backend target architecture

and optionally some scheduling hints for the compiler to generate better op-

timized code.

3 The Taichi Programming Language

We demonstrate our language using a 2D Laplace operator 𝑢 = ∇2𝑣, which is fre-

quently used in physical simulation and image processing. After finite difference

discretization, the operation is defined as:

𝑢𝑖,𝑗 =
1

∆𝑥2
(4𝑣𝑖,𝑗 − 𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗 − 𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗−1).

3 .1 Defining Computation

To decouple data structures from computation, we abstract data structures as map-

pings from multi-dimensional indices to the actual value. For example, access to the

2D scalar field 𝑢 is always done through indexing, i.e. u[i, j], no matter what

the internal data structure is. This is similar to high-level interfaces of some data

structure libraries, yet our compiler analyzes these accesses and produces code

that minimizes redundancy across multiple accesses.

Our language’s frontend is embedded in C++. Computations in our language

are usually defined as kernels looping over active data structure elements (e.g. non-

zero pixels or voxels), to efficiently exploit data sparsity. The kernel contains im-

perative code that operates on the data structures.

We define the aforementioned Laplace operator as a kernel, using a for loop

over variable u, which iterates over all pairs (i, j) where u[i, j] is an active

element:

Kernel(laplace).def([&]() {
For(u, [&](Expr i, Expr j){

auto c = 1.0f / (dx * dx);
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u[i, j] = c * (4 * v[i, j] − v[i+1, j]
− v[i−1, j] − v[i, j+1] − v[i, j−1]);

});
});

For loops over active elements are key to sparse computation in Taichi. The

compiler automatically maintains sparsity. When reading from an inactive element

of v, the compiler returns an ambient value (e.g., 0). When writing to an inactive ele-

ment of u, the compiler automatically changes the internal data structure, allocates

memory, and marks the element as active (In this specific kernel, no activation will

occur, since we are only writing to active elements of u, and interaction with v is

read-only).

We adopt the Single-Program-Multiple-Data paradigm. Our language is simi-

lar to other SPMD languages such as ispc and CUDA, with three additional com-

ponents: 1) parallel sparse For loops, 2) multi-dimensional sparse array accessors,

and 3) compiler hints for optimizing program scheduling.

The For loop is automatically parallelized and vectorized. Our language sup-

ports typical control flow statements, such as If−Then−Else and While loops. We

allow users to define mutable local variables (Var). Our language can be used to

write a full volumetric path tracer with complex control flow (Sec. 6 .5). The

language constructs supported inside computation kernels are listed below.

// Parallel loop over the sparse tensor "var"
For(Expr var, std::function)
// Loop over [begin, end)
For(Expr begin, Expr end, std::function)
// Access one element in "var" with index (i, ...)
operator[](Expr var, Expr i, ...)

While(Expr cond, std::function)
If(Expr cond)
If::Then(std::function)
If::Else(std::function)
Var(Expr) // Declare a mutable local variable
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Atomic(A) += B // Atomic add to global element A

Our language also offers compiler hints for scheduling:

// For CPU
Parallelize(int num_threads) // Multi−threading
Vectorize(int width) // Loop vectorization
// For GPU
BlockDim(int blockDim) // Specify GPU block size
// For scratchpad optimization
AssumeInRange(Expr base, int lower, int upper)
Cache(Expr)
// Cache data into GPU L1 cache
CacheL1(Expr)

More discussions on hints for scratchpad optimization (AssumeInRange and Cache)

and CacheL1 are in Section 4 .1.

3 .2 Describing Internal Structures Hierarchically

After writing the computation code, the user needs to specify the internal data

structure hierarchy. Specifying a data structure includes choices at both the macro

level, dictating how the data structure components nest with each other and the

way they represent sparsity, and the micro level, dictating how data are grouped

together (e.g. structure of arrays vs. array of structures).

Structural nodes and their decorators Our language provides structural nodes to

compose the hierarchy, and decorators to provide structural nodes with particular

properties. These constructs and their semantics are listed below:
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dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordinates to data

addresses in memory. Suitable for high sparsity.

dynamic: Variable-length array, with a predefined maximum length. It serves the

role of std::vector, and can be used to maintain objects (e.g. particles) contained

in a block.

(a) structural nodes

morton: Reorder the data in memory using a Z-order curve (Morton coding), for

potentially higher spatial locality. For dense only.

bitmasked: Use a mask to maintain sparsity information, one bit per child. For

dense only.

pointer: Store pointers instead of the whole structure to save memory and main-

tain sparsity. For dense and dynamic.

(b) node decorators

These data structure components provide trade-offs regarding access cost and

space consumption. For example, a hash table has relatively long access time (e.g.

50 CPU cycles), but it is very economical in terms of memory space, especially in

extremely sparse cases (e.g. 0.1%). Therefore it is often suitable for the top layer,

when only a few hundred children are active out of, say, 128 × 128 × 128. On the

other hand, a dense array with a bitmask can be activated and accessed quickly,

but the bitmask will occupy space inefficiently in highly sparse cases.

Defining the hierarchy Users can compose the data structure components arbi-

trarily to form desired hierarchies and to explore different trade-offs. The compiler

will then synthesize how computational kernels are executed on the specific sparse

data structure (Fig. 2-5).

For example, the following code specifies two fixed-size 2D dense arrays over

u and v.
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Figure 2-5: In our language, programmers define data structures by nesting ele-
mentary components such as hash tables and dense arrays. Kernels are defined
as iterations over leaf elements (i.e., voxels or pixels), independent of the internal
data organization. Leaf blocks, immediate blocks of leaf elements, are the smallest
quantum of storage and computation tasks.

Global(u, f32); Global(v, f32);
layout([&]() {

auto ij = Indices(0, 1);
// Allocate a structure−of−arrays dense grid.
// Equivalent to:
// float u[256][256]; float v[256][256];
root.dense(ij, {256, 256}).place(u);
root.dense(ij, {256, 256}).place(v);

});

Global(u, type) declares an N-dimensional (sparse) tensor of name u and type

type. These tensors are accessible by all kernels, so we call them global variables.

layout takes a C++ lambda function that describes the data structure hierarchy.

Indices are used to specify sizes of structural nodes.

root denotes the root of the hierarchy. dense, a structural node of the tree, creates

a child node of the root. Calling dense on root twice creates two children. Each

structural node function call has two arguments, the first specifies the dimensions

of its children, the second specifies the number of elements in the corresponding

dimension. Here, dense(ij, {256, 256}) means the 2D dense array has 256 cells
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along index i (𝑥-axis) and 256 cells along j (𝑦-axis).

place(u) and place(v) assign the global variables u, v to the corresponding

data structure hierarchies. The equivalent C-style data structure definition is pro-

vided in the comments.

The code above specifies a structure-of-arrays (SOA) layout. We can easily

switch to an array-of-structures (AOS) layout using the following code:

// struct node {float u, v;};
// node data[256][256];
auto &node = root.dense(ij, {256, 256});
node.place(u); node.place(v);
// or equivalently
root.dense(ij, {256, 256}).place(u, v);

In this case, a single dense node contains both u and v, since we called place

twice on the same dense node. As syntactic sugar, place can also take more than

one parameter. When materialized in memory, in this AOS layout 𝑢𝑖,𝑗 and 𝑣𝑖,𝑗 are

next to each other, while in the previous SOA layout 𝑢𝑖,𝑗 is next to 𝑢𝑖,𝑗+1 and is

far away from 𝑣𝑖,𝑗 . These two layouts have very different memory behaviors (e.g.

cacheline utilization) in different applications.

We can nest the structural nodes to specify the hierarchical tree structure in

a top-down order. For example, the following code defines a three-level sparse

grid, with the top-level being a hash table, the second-level being a dense array of

pointers, and the third-level being a fixed-size dense array (Fig. 2-5):

root.hash(ij, {4, 4})
.dense(ij, {4, 4}).pointer()
.dense(ij, {16, 16}).place(u, v);

Apart from multiple global variables, structural nodes can also have multiple

structural nodes as children. For example, the following code defines a bitmasked

sparse array, where each of its elements is composed of a dense array and a dy-

namic array (similar to std::vector):

Global(u, f32); Global(v, f32); Global(p, f32);
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auto k = Index(2);
auto &block = root.dense(ij, {16, 16});
// Child 1: dense array
block.dense(ij, {16, 16}).place(u, v);
// Child 2: dynamic array
block.dynamic(k, 256).place(p);

The equivalent C++ code is:

struct Child1Node {
float u;
float v;

};
struct Block {

Child1Node child1[16][16];
std::vector<float> child2; // p
// Note: in Taichi the dynamic array has a
// pre−defined maximum size, unlike std::vector that grows

arbitrarily.
};
struct Root {

Block blocks[16][16];
};

The structural node types are concise, but they are capable of expressing a large

variety of data structures. Figure 2-6 illustrates a few complex data structures rep-

resented with our language. A new data structure can be designed with a few

lines of code. Rapidly experimenting with these data structures allows us to find

the optimal one for a specific task and hardware architecture.

4 Domain-Specific Optimizations

Hierarchical data structures provide an efficient representation for sparse fields

but have high access costs due to their complexity, especially when parallelism is

desired. Our compiler reduces access overhead from three typical sources:
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Out-of-cache access. In modern architectures, loading data from main memory is

around one hundred times slower than an in-cache access. Ensuring data locality is

thus crucial for performance. This is particularly important on GPU, and it means

that we need to efficiently utilize shared memory to cache data.

Data structure hierarchy traversal. Traversing hierarchical data structures is ex-

pensive. For example, hash table queries may take tens or hundreds of clock cycles.

Fortunately, we can often amortize the cost by leveraging spatial locality (Fig. 2-2).

Instance activation. For write access, we need to activate previously inactive

nodes. This usually involves atomic operations or spinlocks, which are not only

intrinsically slow, but also serialized.

We present three types of optimizations that lead to higher performance, through

better cache locality, reduction of redundant accesses, and automatic paralleliza-

tion and vectorization.

4 .1 Scratchpad Optimization through Boundary Inference

The “scratchpad” pattern is a common optimization to reduce load-to-use latency

and memory bandwidth consumption, when potential data reuse exists. Scratch-

pads are small software-managed local data arenas, typically stored in L1 cache

(CPU) or shared memory (GPU), and are intended for fast local computation. But

programming with scratchpads is error-prone, and the size of a scratchpad is cou-

pled with the leaf block size.

We provide a construct Cache(v) to enable the scratchpad optimization, which

can be specified in a kernel. For example, take the discrete Laplace operator from

Sec 3 .1. Let us also assume that the inputs are stored in dense arrays at the leaf

level (dense(ij, {4, 4}).place(v)). Our bound inference engine will infer that

each output u[i, j] requires values from the 3 × 3 neighborhood of input v, and

then allocate a local scratchpad array with the necessary size for this leaf block
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Figure 2-7: Left and middle: Combining kernel and data structure information,
the compiler will infer the elements required by this compute block. In this specific
case, a 6 × 6 scratchpad will be generated, covering region [−1, 5) × [−1, 5). Right:
The v (yellow square with red border) element is loaded into shared memory, and
then reused by u five times (three shown in green blocks with their stencil shown
in semitransparent blue). By doing this we reduce data load-to-use latency and
main memory bandwidth consumption significantly.

(Fig. 2-7, left and middle). We use interval analysis for bounds inference as in

Halide [102] to determine a rectangular bound.

Our bounds inference requires the access offsets to be known at compile time.

However, in many cases this is too restrictive. Fortunately, oftentimes it is possi-

ble to determine bounds using domain knowledge from the data. Therefore we

provide an AssumeInRange construct for specifying the bounds of individual vari-

ables. The compiler then propagates these bounds to generate a scratchpad. For

example, in the semi-Lagrangian advection kernel below, the backtrace distance is

bounded by the Courant-Friedrichs-Lewy number and supplied to the compiler:

Kernel(advect).def([&]() {
For(m, [&](Expr i, Expr j){

auto u = velocity(0)[i, j];
auto v = velocity(1)[i, j];

auto backtrace_i = Var(i − cast<int32>(u * dt/dx));
auto backtrace_j = Var(j − cast<int32>(v * dt/dx));

backtrace_i = AssumeInRange(i, {−2,3});
// i.e., i − 2 <= backtrace_i < i + 3;
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backtrace_j = AssumeInRange(j, {−2,3});
// i.e., j − 2 <= backtrace_j < j + 3;

m = m_input[backtrace_i, backtrace_j];
}});

In our current implementation, the scratchpad optimization is only applied for

the GPU backend. The latency and bandwidth difference between software man-

aged shared memory and hardware managed L2 cache makes such an optimiza-

tion especially profitable on GPU. We anticipate this optimization would also help

for the CPU backend, but since the CPU L1 cache already plays a similar role, the

improvement might be less significant.

Apart from the Cache construct that provides shared memory usage hints, the

CacheL1(V) construct for the GPU backend instructs the compiler to issue __ldg

intrinsics to force data loads from the global variable V into GPU L1 cache. Un-

like x86 CPUs, NVIDIA GPUs cache data in L2 cache by default. Since L1 caches

are maintained by GPU hardware on the fly, no compile-time bound inference is

needed.

4 .2 Removing Redundant Accesses

As illustrated in Fig. 2-2, the cost of an expensive hierarchical data structure’s ac-

cess can often be amortized. By considering multiple accesses simultaneously, the

compiler can leverage common traversal paths. This is a form of constant propaga-

tion and common subexpression elimination. We develop a minimal intermediate

representation to represent data structure operations. The intermediate representa-

tion is specially designed for vectorized accesses and contains explicit information

about accesses and data structure boundaries. This allows us to perform optimiza-

tions that a typical compiler cannot conduct automatically. We detail the interme-

diate representation and the expression simplification algorithms in Section 5 and

Appendix A .

As an example, consider again the Laplace operator from Sec. 3 .1. This time we
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Figure 2-8: Access optimization assuming the three accesses occur from left to
right. The common paths of the accesses are eliminated. The yellow access is
simplified to a compile-time known offset relative to the red access.

assume we are accessing a three-level data structure like the one in Fig. 2-2. If index

j is 4-wide loop vectorized, we know that j must be a multiple of four and x[i,

j+1] must share the same ancestor with x[i, j]. Therefore, it will be possible to

traverse the data structure just once for both i, j and i, j+1. Our compiler detects

this and handles boundary cases using the specific offset information stored in the

IR (Fig. 2-8), while traditional compilers’ heuristics usually fail to optimize due to

code complexity and potential race conditions and pointer aliasing.

A similar optimization can also be applied for write operations. If two write

accesses happen in the same memory address in the same kernel, the second write

does not need to perform the expensive sparsity check and allocation.

4 .3 Automatic Parallelization and Task Management

Parallelization and Load Balancing Evenly distributing work onto processor

cores is challenging on sparse data structures. Naively splitting an irregular tree

into pieces can lead to partitions with drastically different numbers of leaf blocks

(Fig.2-9).

Our strategy is to generate a task list of leaf blocks, which flattens the data

structure into a 1D array, circumventing the irregularity of incomplete trees. Im-

portantly, we generate a task per block instead of a task per element (Fig. 2-5), to

amortize the generation cost.
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Figure 2-9: Unlike the dense case (left), in sparse data structures, partitioning leaf
nodes at a certain level may lead to an unsatisfactory load imbalance and therefore
inefficient parallelism (right).

On CPU, generating the task list can be done via a light-weight traversal of the

tree in serial. The task list is then queued into a thread pool. We then process the

task queue in parallel via OpenMP.

On GPU, generating the task list in serial is infeasible. Instead, we maintain

multiple task lists, one for each structural node on the root-to-leaf path. The lists

are generated in a layer-by-layer manner: starting from the root node, the queue of

active parent nodes is used to generate the queue of active child nodes. A global

atomic counter is used to keep track of the current queue head.

Kernel launch management on GPU Synchronizing GPU kernels with the CPU

host can be quite costly. In our system, CPU-GPU synchronization (i.e., cudaDeviceSynchronize

()) will only happen when the user explicitly calls the synchronization function or

tries to read/write data from/to the data structure on GPU memory. This design

makes asynchronized execution on GPUs transparent to the user.

5 Compiler and Runtime Implementation

The Taichi programming language is embedded in C++14, providing easy inter-

operability with the host language. (We later released a Python 3 embedding to

further lower the language learning barrier and development cost, but let us focus
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Figure 2-10: The compilation pipeline. The solid lines represent our computation
IR pipeline, while dotted lines indicate the use of data structure information.

on the C++ frontend now.) The compiler is implemented in C++17, borrowing in-

frastructure from the Taichi library [45]. The frontend kernel code is lowered to an

intermediate representation before being compiled into standard C++ or CUDA

code. Key components of our compiler and runtime are a two-phase simplifier

for reducing instructions and removing redundant accesses, an access lowering

transform, a customized memory management system for memory allocation and

garbage collection, and a CPU loop vectorizer. The compilation workflow is sum-

marized in Fig. 2-10.

Our intermediate representation follows the static single assignment design

and is similar to LLVM [72]. Our intermediate representation is more high-level,

containing explicit information about data structure accesses, such as the access

index bounds and the size of the data structure element. This, combined with data
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structure composition information, makes it possible for our compiler to perform

automatic access optimizations. The full list of intermediate representation nodes

is described in Appendix A . We also include a snippet of compiled code in the

supplementary material.

5 .1 Simplification

Apart from the dedicated optimization for the data structure access, our simplifi-

cation phase applies most common general-purpose compiler optimizations, such

as common subexpression elimination, local variable store forwarding, dead in-

struction elimination, and lowering “if”-statements into conditional moves.

We split the simplification into two phases. The first phase greatly reduces and

simplifies the number of instructions and makes it easier for the second simplifi-

cation phase. In practice we have observed cases where disabling the first phase

increases compilation time from a few seconds to tens of minutes. Removing “if”-

statements yields bigger straightline code regions, enabling more potentially help-

ful optimizations.

Central to data structure access simplification are what we call micro access in-

structions: OffsetAndExtractBit, SNodeLookup, GetCh, and IntegerOffset. They

are produced during the access lowering phase, where a root-to-leaf access (e.g. x[

i]) is broken down into several stages for each level in the hierarchy. Since many

different accesses share a similar path from root to leaf, similar micro access oper-

ations can be merged. As shown in Table 2.4, disabling the access lowering phase

has a significant impact on performance.

The stages of moving down a single hierarchy in the data structure are as fol-

lows. First, offsets at each dimension are computed, along with the starting and

ending position of each index represented as bit masks (OffsetAndExtractBit).

This instruction is data-structure-aware. For example, if the kernel is 4-wide loop

vectorized over index j and the child of the current block has a size larger than

4, we are guaranteed that OffsetAndExtractBit will return the same value for j
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, j + 1, j + 2, j + 3. Inference like this allows us to aggressively simplify ac-

cesses. Next, the extracted multi-dimensional indices are flattened into a linear

offset (Linearize). Then a pointer to the item in the data structure is fetched from

the current level of the data structure using the linear offset, along with a check of

whether the node is active or not (SNodeLookUp). We need to pay special attention

to SNodeLookUp when the node is not active: for read accesses SNodeLookUp returns

an “ambient node” with all fields being ambient values such as 0; for write access

SNodeLookUp first allocates the node and then return the new node. Finally the

corresponding field in the item is fetched (GetCh).

In cases where two micro access instructions of the same type lead to a compile-

time-known non-zero offset, we replace the second micro access instruction with

an IntegerOffset instruction, representing the relationship between the two ac-

cesses in bytes, avoiding data structure traversals.

5 .2 Memory Management

Our system relies heavily on the allocation-on-demand mechanism and supports

data structures with dynamic topology. Therefore, efficient management of mem-

ory is a key to performance, especially on massively parallel GPUs.

Memory allocators for variable size requests usually need complex data struc-

tures to maintain available segments, leading to an unacceptable runtime cost.

Therefore, we designed a memory management system that needs only very sim-

ple data structures, specialized for our abstraction.

The memory manager has a memory allocator tailored for each node that re-

quires on-demand allocation, e.g. the pointer and hash nodes. The benefit of

having multiple allocators is that each allocator only needs to allocate memory

segments of a fixed size, which greatly simplifies and accelerates the process.

To minimize the internal data structure used by each memory allocator, we

conservatively reserve a memory pool from our virtual address space, whose size

is equal to the amount of physical memory. Only the actual used space will become
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a resident page in physical memory. This design allows us to implement memory

allocation with a single integer atomic operation.

We make heavy use of the virtual memory system in modern operating sys-

tems, inspired by the SPGrid virtual memory design [110]. The runtime system

will first reserve a virtual address space of size 240B = 1TB. The memory pages

will not be allocated immediately, but in an on-demand manner, with pages zero-

initialized by the hardware. We use the unified memory access feature on NVIDIA

GPUs, thus this address space is shared by the CPU and GPU.

We additionally maintain a list of metadata for each block, including its mem-

ory location and coordinates.

5 .3 Loop Vectorization on CPUs

We designed a loop vectorizer to utilize vector instruction sets such as SSE and

AVX2/512 on modern CPUs. The design is similar to ISPC [99] where masking is

used to avoid side effects of diverging control flow. We ensure that access to data

structures is done through vectorized loads and writes whenever possible.

Vectorized memory access on CPUs To achieve good memory behavior, it is nec-

essary to issue vectorized memory operations instead of scalar loads.3 We emit

SIMD loads and then blend instructions to make maximum usage of the vector

units, based on the compile-time-known offset information after the access simpli-

fications (Fig. 2-11).

5 .4 Interaction with the Host Language

Our language can interact with the C++ host language easily. C++ can be used

to initialize the data, invoke the compiled kernels, and possibly store the outputs.

After a Kernel, laplace, has been defined, it can be used as follows:

3On GPUs this optimization is done via the memory coalescing hardware on the fly, relieving
the compiler of the burden of this optimization.
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Figure 2-11: Loading an 8-wide vector with elements [𝑥𝑏+2, 𝑥𝑏+3, 𝑥𝑎, 𝑥𝑏+5,
𝑥𝑎+2, 𝑥𝑎+3, 𝑥𝑎+4, 𝑥𝑎+5]. The Taichi compiler, to utilize AVX instructions on x86 for
high performance, only issues two vectorized loads that fetch contiguous data
from memory, and then a SIMD blend to generate the desired vector, with binary
mask "00101111". Note that a naive data loading code generator would issue one
scalar load, one scalar to vector promotion, one vector shuffle, and finally one vec-
tor blend instruction, for each element in the vector.

// Initialize
for (int i = 0; i < n; i++)

for (int j = 0; j < 32; j++)
x.val<float32>(i, i + j) = sin(j);

// Run the kernel on the active region
laplace();

// Output
printf("%f\n", y.val<float32>(n/2, n/2));

6 Evaluation and Applications

In this section, we evaluate our language on end-to-end applications for large-

scale visual computing tasks covering physical simulation, rendering, and 3D deep

learning. The results are summarized in Table 4.1. In computation with coher-

ent accesses, our domain-specific optimizations boost performance by a geometric

mean of 3.02× on the same device. Our implementations require 1
10

as many lines

of code and run 2.82× faster than the reference implementations. The code for our

implementations can be found in the supplementary material.
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6 .1 Moving Least Squares Material Point Method

The Material Point Method [115, 112] is a hybrid Eulerian-Lagrangian method, and

is one of the state-of-the-art approaches for elastoplastic continuum simulation.

The method is challenging to implement efficiently due to the interaction between

particles and grids. Gao et al. [35] implemented a high-performance Moving Least

Squares Material Point Method [48] solver on GPU with intensive manual opti-

mization4, including

1. A tailored SPGrid variant on GPUs;

2. Staggered particle-block ownership (Fig. 2-15, left and middle) for parallel

scattering, with shared memory utilization;

3. Warp-level reductions to reduce atomic operations during scattering;

4. Dedicated sorting and delayed reordering to reduce memory bandwidth con-

sumption.

It took us a few attempts, but thanks to the easy data structure exploration sup-

ported by our language, we eventually surpassed their performance by 18%. We

initially followed the structure of arrays (SOA) particle layout in their reference

implementation. Although we are easily able to implement optimization (1) and

(2) within ten lines of code (instead of hundreds in the reference implementation),

the warp-level optimization (3) is below our level of abstraction5, and we did not

implement the complex sorting and reordering scheme (4) for simplicity. When

particles are perfectly sorted, we were able to achieve comparable performance

with the reference implementation. However, when the simulation progresses and

the spatial distribution of particles changes, our performance drops drastically (Ta-

ble 2.2, row “SOA”), especially when simulating liquids.

4We obtained their open-source CUDA solver and did further performance optimizations which
made this reference implementation 1.98× faster, and carefully confirmed that we have achieved
the best-human-effort performance following their design decisions.

5For portability, we do not provide warp-level intrinsics such as __ballot.

59



Table 2.2: [35] used an SOA particle layout that makes sequential access efficient,
yet complex sorting and reordering schemes are needed. When particles’ attributes
are randomly shuffled in memory, the simulation runs 6.03× slower due to insuf-
ficient GPU cacheline utilization under random memory access. Our AOS particle
layout is easy to implement and, more importantly, less sensitive to particle order,
because even under random particle access order, different attributes of the par-
ticle stay in the same or nearby cacheline. Unlike CPUs, NVIDIA GPUs have no
prefetching, so cacheline usage is key to performance, and access predictability is
of less importance. This makes sorting unnecessary, leading to a much simpler and
more efficient algorithm.

Particle Layout Ordered Randomly Shuffled

SOA 3.52ms 21.23 ms

AOS 3.15ms 4.28 ms

Figure 2-12: A sand jet animation using MLS-MPM with up to 3 million particles,
simulated using on average 2.2 sec/frame (100 substeps/frame).

Fortunately, using our language we were able to quickly explore different par-

ticle/grid layout schemes and found that switching particle layouts from structure

of arrays to array of structures resolved this issue (Table 2.2, row “AOS”). In con-

trast, in the reference implementation the data layout is tightly coupled with the

computational kernels, making it difficult to experiment with different data struc-

tures.

The data structure code for the high-performance data structure we found for

MPM is illustrated in Figure 2-13. For particles we use array of structures, for grids

we use structure of arrays, and each block maintains a list of indices of its contained

particles. This greatly simplifies the data structure and algorithms used by Gao et
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Table 2.3: Using scratchpad memory (SPM, a.k.a. “shared memory" on NVIDIA
GPUs) makes the P2G kernel 2.54× faster and G2P kernel 2.73× faster. In our
language this optimization can be easily achieved with the “Cache” hint.

GPU-SPM GPU+SPM

P2G 5.102ms 2.011ms

G2P 1.975ms 0.722ms

al., for example we avoid the complex radix sort of the particles. The original grid

hierarchy used by [35] is sparse yet bounded. This leads to simplicity and lower

access cost, yet often leads to unnatural behavior when the simulation bound can-

not be predetermined. In our language, adding a hash or dense().pointer() node

at the top level of the grid conveniently makes the simulation domain virtually

unbounded, which will suit corresponding boundary conditions (Figure 2-14).

Our implementation has only four kernels: sort particle indices to their contain-

ing blocks, particle to grid (P2G), grid normalization, and grid to particle (G2P). In

contrast, the reference implementation has over 20 kernels, with the majority of

them dealing with data structure maintenance. Our compiler automatically gener-

ates code to maintain the topology of the data structure. For example, it automati-

cally activates a block and its parents when a particle touches it.

In the P2G and G2P kernels, we use the AssumeInRange construct to hint to the

compiler the spatial relationship between blocks and their containing particles. We

also apply Gao et al.’s stagger particle-grid ownership optimization by offsetting

the particle position by ∆𝑥 (Fig. 2-15), leading to a tighter access bound at the par-

ent level. The compiler will automatically allocate scratchpads for each particle’s

3 × 3 × 3 span on each 4 × 4 × 4 block, which is a 6 × 6 × 6 scratchpad in shared

memory. We did an ablation study on the scratchpad optimization, and it indeed

leads to a significant speedup (Table 2.3).

Examples of MLS-MPM sand and liquid animation simulated and rendered

with Taichi programs are shown in Fig. 2-12 and Fig. 2-16.
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auto i = Index(0), j = Index(1), k = Index(2);
auto p = Index(3);
auto &fork = root.dynamic(p, max_n_particles);
// Particle array of structures
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
fork.place(particle_F(i, j)); // 3x3 force matrix

// ... do the same for other particle attributes
// Grid structures of arrays
auto &block = root.dense({i, j, k}, n / grid_block_size).pointer();
block.dense({i,j,k}, grid_block_size).place(grid_v(0));
block.dense({i,j,k}, grid_block_size).place(grid_v(1));
block.dense({i,j,k}, grid_block_size).place(grid_v(2));
block.dense({i,j,k}, grid_block_size).place(grid_m);
// Each block stores a list of particle indices
block.dynamic(p, pow(grid_block_size, 3) * 64).place(l);

Figure 2-13: The data structure code for our material point method simulation. The
interaction between particle and grid in this hybrid-Eulerian-Lagrangian approach
leads to a huge space of potential data structure designs. We use array of structures
for the particles and structure of arrays for the grids. We also store a dynamic list of
particles in each block for speeding up particle lookup (the “Hierarchical Particle
Buckets” in Fig. 2-6). We can easily modify the code to change the layout, or switch
to a hash table for the top level of the grid to achieve an unbounded domain (Fig. 2-
14).

6 .2 Linear Elasticity Finite Element Kernel

A large scale sparse grid-based finite element solver was presented by Liu et al.

[79] for high-resolution topology optimization. They proposed a matrix-free elas-

ticity operator for the conjugate gradient iterations on x86_64 with vectorization.

Their hand-optimized kernel is tailored for SPGrid [110], with carefully imple-

mented vectorized load instructions (e.g. via the _mm256_loadu_ps intrinsic).

This is a highly compute-bound task. For each voxel, over one thousand multi-

ply and add instructions are issued, while fetching material parameters from only

2 × 2 × 2 cells and 3D displacements from 3 × 3 × 3 nodes. The whole algorithm

is gather-only so it parallelizes naturally. We consider Liu et al.’s code a highly-

optimized reference implementation for evaluating our language and compiler in

a compute-bound situation.

We reproduced their algorithm in our language. Our compiler is especially
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Figure 2-14: Smashing a snow ball onto the ground: bounded vs. unbounded
simulation. By changing data structures (and boundary conditions), we can easily
switch to a virtually unbounded domain.

good at compute-bound tasks, as our access optimization and auto-vectorization

significantly reduce the number of instructions (Table 2.4). With all optimizations

on, our implementation is 1.77× faster on an x86 CPU. Without modifying the

code, our program runs on a GPU 8.2× faster than the generated CPU code, and

14.6× faster than the reference CPU implementation. We conduct a comprehensive

ablation study of our compiler optimizations in Table 2.4, and found our compiler

optimizations lead to 10.6× and 5.58× higher performance on CPU and GPU.

6 .3 Multigrid Poisson Solver

Large-scale Poisson equation solving has extensive use in graphics, including fluid

simulation [82], image processing [5] and mesh reconstruction [65]. We implement

a Multigrid-Preconditioned Conjugate Gradients (MGPCG) solver [86], which has

become popular for pressure projection in physically based animation.

We implemented a simplified version of the reference implementation, with the

following differences:

• Smoothers: the reference implementation uses Gauss-Seidel for boundary

smoothing and damped Jacobi for interior smoothing, while we used red-

black Gauss-Seidel smoothing for both boundary and interior regions.
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Figure 2-15: Optimizing particle sorting. Left: We first sort the indices of particles
to their respective grid blocks. P2G and G2P can then be done in a block-wise
manner with high locality. Middle: We sort particles to a block staggered by ∆𝑥.
Gao et al. [35] describe a similar optimization: by doing so, particles sorted to
each block will touch 2 × 2 × 2 blocks only, instead of 3 × 3 × 3 blocks in the case
without staggering. Right: Note the extra grey cells without staggering. Since
our compiler can automatically apply bounds inference, we quickly experimented
with this approach and observed a 1.29× speed up.

• Restriction and prolongation: instead of using the 4 × 4 × 4 trilinear interpo-

lation operator, we use 2 × 2 × 2 averaging.

• Boundary conditions: we support zero Dirichlet boundary conditions only,

while the reference implementation also supports Neumann boundaries and

their coarsening.

• Operator fusing: the reference implementation aggressively fuses operations,

such as smoothing and dot products, to save memory bandwidth. We use

temporary buffers to store some of these results to simplify the code.

Fully implementing McAdams et al.’s algorithm is possible in our language. For

this specific benchmark we only need a simplified version.

A user experienced with both our language and physical simulation was able

to implement our multigrid preconditioner within only 80 minutes and 300 lines

of code.

We run both our implementation and reference on an x86 CPU until conver-

gence. Our performance is 1.35× lower than the reference, likely because our im-

plementation has a slightly inferior convergence rate and uses temporary buffers
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Table 2.4: An ablation performance study on the linear elasticity FEM kernel. Dis-
abling the simplification I pass before lowering access does no harm to run-time
performance, yet it increases compilation time from several seconds to 40 minutes
when generating CPU code. Disabling the simplification II pass after lowering ac-
cess leads to a binary size of 8.1MB instead of 377KB, since clang failed to remove
redundant accesses. Using a bad data layout makes performance drop by nearly
an order of magnitude.

Ablation CPU Time GPU Time

No multithreading 73.43ms -

No vectorization 83.54ms -

No vectorized load instructions 22.69ms -

No simplification I 17.01ms 2.13 ms

No access lowering 182.19ms 6.046 ms

No simplification II 85.51ms 11.784 ms

AOS instead of SOA 136.03ms 20.992 ms

All optimizations on 17.16ms 2.11 ms

to simplify the code. On the other hand, changing our backend to GPU requires

no effort, and it runs 2.64× faster than our CPU version and 1.9× faster than the

reference implementation. An ablation study on our compiler optimizations and

parallelization is shown in Table 4.5.

Our solver automatically generalizes to an irregular and sparse case, while the

reference implementation deals with only dense grids. To implement this multi-

resolution approach, we generated a structural tree of 36 nodes and 31 kernels for

Table 2.5: An ablation performance study on the MGPCG Poisson solver.

Ablation CPU Time GPU Time

No multithreading 7.30s -

No vectorization 4.01s -

No access lowering 5.68s 1.78 s

All optimizations on 2.98s 1.13 s
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a five-level multigrid hierarchy.

The performance data are obtained from a 2563 dense grid, with zero Dirichlet

surrounding voxels. The initial right-hand side is an analytical field sin(2𝜋𝑥) cos(2𝜋𝑦) sin(2𝜋𝑧),

with 𝑥, 𝑦, 𝑧 ∈ [0, 1) being the spatial coordinates. Initial guesses for the conjugate

gradient are set to zero. We stop iterating when the 𝑙2 norm of residual is reduced

by a factor of 106.

The same solver can potentially be used for other graphics applications such as

panorama image stitching [5] or mesh reconstruction [65].

6 .4 3D Convolutional Neural Networks

3D deep learning requires convolutional neural networks to operate on voxels in-

stead of images. Unlike images, voxels require an efficient sparse representation

for high-resolution 3D objects. Several sparse voxel approaches have been pro-

posed for 3D deep learning [106, 37, 122, 123]. We implemented a 3D convolution

layer, operating on multi-channel sparse voxels. The kernel is as simple as the

mathematical definition of convolution, while the compiler automatically gener-

ates the code for efficiently accessing the sparse voxels. We compare to the Sparse

Convolutional Network [37] implemented in CUDA, which uses a hash table with

pointers to a dense matrix to store sparse 3D feature maps. We take the Stanford

bunny, voxelize it into a 256 × 256 × 256 grid, and copy over 16 channels. We then

apply a 3 × 3 × 3 × 16 × 16 convolution layer. By using a two-level hierarchy with

pointer arrays, under 1% sparsity, we are roughly 12 times faster than the reference

code. Under 10% sparsity, we are 23 times faster. We use the CacheL1 schedule to

cache the convolution weights in GPU L1 cache. This schedule hint boosts perfor-

mance by 1.8×.

6 .5 Volumetric Path Tracing

We implemented a volumetric path tracer inspired by Mitsuba [57]’s implementa-

tion, with Woodcock tracking [129] and an isotropic phase function. We compare
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against the Tungsten renderer6, which uses VDB [89] to represent volumes.

The benchmark scene includes a 584×576×440 density field containing bunny-

shaped smoke and a single point light source. We rendered 512 × 512 images with

128 samples per pixel and a path length limit of 128. On CPU, our implementa-

tion is 2.38× faster than the reference implementation. Our GPU version is 98.86×

faster than our CPU version and 235.6× faster than the reference implementation.

Our domain-specific optimizations only lead to a 5% performance boost on CPU

and no performance improvement on GPU, since the access pattern is largely inco-

herent in volume rendering. Still, we obtain a fast GPU renderer with no additional

implementation, and are able to explore different sparse data structures.

We made our best effort to match our implementation to Tungsten’s. With

slight modifications to both renderers7, we get qualitatively similar results (see

the supplemental material).

7 Limitations

Although we in general get satisfactory results on the five benchmark cases, there

are limitations and potential for future work:

Low arithmetic intensity tasks In the material point method (Sec. 6 .1) and finite

element method (Sec. 6 .2) cases, when the performance is compute-bound, our ac-

cess optimizer can greatly improve performance by reducing access instructions.

However, in the multigrid Poisson solver case (Sec. 6 .3), although the optimizer

improves performance by a factor of 1.9×, we are soon bounded by memory band-

width. In these cases reducing instructions no longer helps. As a result, the unvec-

torized reference implementation is still faster than our vectorized implementation

by 1.3×. This is because the reference is more bandwidth-efficient, due to operator

fusing optimizations. This suggests investigating approaches that can automati-

6https://github.com/tunabrain/tungsten
7We implemented Woodcock tracking in Tungsten, and used a two-level grid in our implemen-

tation to approximate the OpenVDB hierarchical DDA traversal [90] in Tungsten.
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cally fuse operators, which might require further decoupling of computation and

scheduling [102].

Less coherent accesses. For the volume rendering example (Sec. 6 .5), while the

rays exhibit some coherent behavior, our compiler is not able to infer this at com-

pile time. Approaches that extract locality information at run-time such as ray

reordering [98] could potentially be used to boost performance.

8 Related Work

8 .1 Array Compilers

Many programming models for efficiently compiling array operations have been

proposed.

Halide [102, 104] decouples image processing operations and lower-level schedul-

ing such as loop transformations and vectorization. Several polyhedral compilers

adopt a similar idea [7, 88, 120, 8]. All these compilers focus on dense data struc-

tures and do not model sparsity. Our language decouples algorithms from the

internal organization of sparse data structures, allowing programmers to quickly

switch between data organizations to achieve high performance.

Several sparse tensor compilers target linear algebra operations (e.g. taco [67,

22], ParSy [20, 21]). They focus on constructing efficient iteration spaces between

different sparse matrices under linear algebra operations. Several compilers tar-

get graph operations such as breath-first-search or shortest path (e.g. [125, 133]).

In contrast, we focus on generating high-performance traversal code for spatially

coherent access to hierarchical and sparse data structures.

To efficiently vectorize access to data structures, we adopt the Single-Program-

Multiple-Data model [26] in our computational kernels, which is the foundation of

modern parallel languages such as CUDA, OpenCL [113], ispc [99], and IVL [74].
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Physical Simulation Languages Several domain-specific languages exist for phys-

ical simulation. They usually abstract the domain as a graph structure for rep-

resenting meshes. Liszt [30] focuses on solving partial differential equations on

meshes. Simit [69] models the domain as sparse matrices while Ebb [13] employs a

relational data model. We provide a different abstraction for lower-level optimiza-

tions, focusing on hierarchical sparse data structures.

8 .2 Data-Oriented Design

Inspired by the increasing relative expense of memory operations, the video game

and visual effects industries have recently started to adopt the data-oriented de-

sign philosophy [4, 73]. It is a software engineering approach focused on data

access, as opposed to the more traditional object-oriented design where the stor-

age is fragmented. Adopting a similar philosophy, ispc [99] and IVL [74] both

provide constructs for transformations between array of structures and structure

of arrays. Our language facilitates data-oriented design and shares the same phi-

losophy through decoupling of data structures and computation.

8 .3 Hierarchical Sparse Grids in Graphics

Computer graphics, especially in the field of physical simulation, has a long his-

tory of using multi-level sparse regular grids for finite element methods, level set

methods [95], or Eulerian fluid simulation. Sparse grids are used for representing

large-scale simulation data. Bridson [15] uses a two-level grid, Houston et al. [43]

use run-length-encoding to compress data. DTGrid [93] employs compressed-row-

storage. VDB [89] uses a static B+tree-like structure to represent an unbounded

domain. SPGrid [110] uses a shallow hierarchy while utilizing the modern virtual

memory system. GPU variants of VDB [131, 41] and SPGrid [35] have recently been

designed. Nielsen and Bridson [92] propose a wide-branching tile tree of voxels

for fluid simulation. Bailey et al. [9] sort particles to corresponding voxel blocks,

similar to our "Hierarchical Particle Buckets" described in Section 6 .1. Outside of
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simulation, Kazhdan et al. [65] and Agarwala [5] used octrees for solving Poisson’s

equation for image stitching and mesh reconstruction, respectively. Chen et al. [19]

use a hierarchical grid for storing signed distance fields.

9 Conclusion

We have presented a new programming language and its optimizing compiler for

developing high-performance implementations of sparse visual computing tasks.

Our novel design allows the language to provide both productivity and perfor-

mance.

The computation-data structure decoupling allows the programmer to quickly

explore different data structure hierarchies. As an example, we used this success-

fully to find a new efficient layout for the material point method, demonstrating

the potential of the language for developing novel, high-performance data struc-

tures.

Our compiler’s automatic parallelization and access optimizations are espe-

cially useful in reducing the number of instructions for compute-bound tasks,

while the scratchpad optimization improves memory locality. Our compiler en-

ables programmers, for the first time, to implement optimized large-scale simula-

tions within a few hundred lines of code.
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Appendix for chapter 1

A Intermediate Representation Instructions

Our intermediate representation follows the typical static single assignment form.

It contains the following control flow nodes: StructFor (for looping data struc-

tures), RangeFor (for looping data over ranges), If, While, WhileControl (while

combined with break).

The expression tree contains the following nodes: Const, Alloca (for local mu-

table variables), UnaryOp, BinaryOp, TrinaryOp, Rand, ElementShuffle (for loop vec-

torization), RangeAssumption (for bound inference).

When a data structure is accessed, GlobalLoad and GlobalStore are issued with

addresses pointed to by GlobalPtr. SNodeOp is used to activate grids and check for

sparsity. When a local mutable variable is accessed, LocalStore and LocalLoad are

issued. Atomic instructions are represented by AtomicOp. ClearAll cleans up the

data structures.

As mentioned in Sec. 5 .1, GlobalPtr is lowered to the following micro access

nodes, to facilitate expression simplification:

• OffsetAndExtract

• Linearize

• SNodeLookup

• GetCh

• IntegerOffset

B Benchmark Machine Specifications

Here we list the machine specifications for our benchmarks for reproducing the

performance numbers.
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The MLS-MPM, FEM and MGPCG benchmarks were done on an Intel Core i7-

7700K CPU with four cores at 4.2GHz, 32 GB main memory, and an NVIDIA GTX

1080Ti graphics card.

The CNN benchmark was done on an Intel Core-i7 9800X CPU with eight cores

at 3.8GHz, 32 GB main memory, and an NVIDIA RTX 2080 GPU.

The rendering benchmark was done on an Intel Xeon E5-2690 v4 with 28 cores

at 2.60GHz, 64 GB main memory, and an NVIDIA Tesla V100 GPU.

clang−7 and nvcc 10.0 were used as backend compilers.

Although finding a machine with these exact specifications may be difficult, the

relative performance numbers are roughly machine-independent. We encourage

the reader to run the example programs with the provided commands to reproduce

our results, and to explore different combinations of data structures and compiler

optimizations.

C Intermediate Representation Sample

Below is a simple kernel and its IR, in multiple compilation stages.

// Kernel
Kernel(inc).def([&]() {

For(a, [&](Expr i) {
a[i] = b[i] + 1;

});
});
// AST
for tmp2 where a_global active {

#a_global[tmp2] = (load #b_global[tmp2] + 1)
}
// IR
<i32x1> $0 = alloca
for $0 where a active, step 1 {

$2 = local load [ [$0[0]]]
<i32x1> $3 = ptr [S1], index [$2] activate=false
$4 = global load $3
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<i32x1> $5 = const [1]
$6 = add $4 $5
$7 = local load [ [$0[0]]]
<i32x1> $8 = ptr [S0], index [$7] activate=true
$9 : global store [$8 <− $6]

}
// Access Lowered
<i32x1> $0 = alloca
for $0 where S0 active, step 1 {

<i32x1> $2 = local load [ [$0[0]]]
<i32x1> $3 = ptr [S1], index [$2] activate=true
<i32x1> $4 = shuffle $2[0]
$5 = linearized(ind {}, stride {})
$6 = [S4][root]::lookup(root, $5) coord = {$4} activate = false
$7 = get child [S4−>S3] $6
$8 = bit_extract($4 + 0, 7~14)
$9 = linearized(ind {$8}, stride {128})
$10 = [S3][dense]::lookup($7, $9) coord = {$4} activate = false
$11 = get child [S3−>S2] $10
$12 = bit_extract($4 + 0, 0~7)
$13 = linearized(ind {$12}, stride {128})
$14 = [S2][dense]::lookup($11, $13) coord = {$4} activate = false
$15 = get child [S2−>S1] $14
<i32x1> $16 = shuffle $15[0]
<i32x1> $17 = global load $16
<i32x1> $18 = const [1]
<i32x1> $19 = add $17 $18
<i32x1> $20 = ptr [S0], index [$2] activate=true
<i32x1> $21 = shuffle $2[0]
$22 = linearized(ind {}, stride {})
$23 = [S4][root]::lookup(root, $22) coord = {$21} activate = false
$24 = get child [S4−>S3] $23
$25 = bit_extract($21 + 0, 7~14)
$26 = linearized(ind {$25}, stride {128})
$27 = [S3][dense]::lookup($24, $26) coord = {$21} activate = false
$28 = get child [S3−>S2] $27
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$29 = bit_extract($21 + 0, 0~7)
$30 = linearized(ind {$29}, stride {128})
$31 = [S2][dense]::lookup($28, $30) coord = {$21} activate = false
$32 = get child [S2−>S0] $31
<i32x1> $33 = shuffle $32[0]
<i32x1> $34 : global store [$33 <− $19]

}
// Final Optimized
<i32x1> $0 = alloca
for $0 where S0 active, step 1 {

<i32x1> $2 = local load [ [$0[0]]]
$3 = linearized(ind {}, stride {})
$4 = [S4][root]::lookup(root, $3) coord = {$2} activate = false
$5 = get child [S4−>S3] $4
$6 = bit_extract($2 + 0, 7~14)
$7 = linearized(ind {$6}, stride {128})
$8 = [S3][dense]::lookup($5, $7) coord = {$2} activate = false
$9 = get child [S3−>S2] $8
$10 = bit_extract($2 + 0, 0~7)
$11 = linearized(ind {$10}, stride {128})
$12 = [S2][dense]::lookup($9, $11) coord = {$2} activate = false
$13 = get child [S2−>S1] $12
<i32x1> $14 = global load $13
<i32x1> $15 = const [1]
<i32x1> $16 = add $14 $15
$17 = get child [S2−>S0] $12
<i32x1> $18 : global store [$17 <− $16]

}

D MGPCG code comparison

Below is the 7-point stencil code

(Relaxation_And_Dot_Product_Interior_Helper.h) from [86]. Note although

a dense 2-level grid is used (instead of a more complex sparse one), the code is
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already convoluted. The redundant code is necessary, however, for performance

since they enforce complex strides to be evaluated at compile time.

enum WORKAROUND {
x_block_size = 4,
y_block_size = 4,
z_block_size = 4,
padded_y_size = y_size + 2,
padded_z_size = z_size + 2,
coarse_y_size = y_size / 2,
coarse_z_size = z_size / 2,
coarse_padded_y_size = coarse_y_size + 2,
coarse_padded_z_size = coarse_z_size + 2,
x_shift = padded_y_size * padded_z_size,
y_shift = padded_z_size,
z_shift = 1,
coarse_x_shift = coarse_padded_y_size * coarse_padded_z_size,
coarse_y_shift = coarse_padded_z_size,
coarse_z_shift = 1,
x_plus_one_shift = x_shift,
x_minus_one_shift = −x_shift,
y_plus_one_shift = y_shift,
y_minus_one_shift = −y_shift,
z_plus_one_shift = z_shift,
z_minus_one_shift = −z_shift

};
...
template <class T, int y_size, int z_size> void
Relaxation_And_Dot_Product_Interior_Size_Specific_Helper
<T, y_size, z_size>::
Compute_Delta_X_Range(const int xmin,

const int xmax,
const int partition_number) {

const T one_sixth = 1. / 6.;
for(int block_i=xmin;block_i<=xmax;

block_i+=x_block_size)
for(int block_j=1;block_j<=y_size;block_j+=y_block_size)
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for(int block_k=1;block_k<=z_size;block_k+=z_block_size)
for(int i=block_i;i<block_i+x_block_size;i++)
for(int j=block_j;j<block_j+y_block_size;j++)
for(int k=block_k;k<block_k+z_block_size;k++) {

int index = i * x_shift + j * y_shift + k * z_shift;
delta[index] = one_sixth * (

u[index + x_plus_one_shift] +
u[index + x_minus_one_shift] +
u[index + y_plus_one_shift] +
u[index + y_minus_one_shift] +
u[index + z_plus_one_shift] +
u[index + z_minus_one_shift]) −
u[index];

}}

Code in our language that defines the data structure and the same stencil:

int block_size = 4;
layout([&] {

root.dense(ijk, n / block_size)
.dense(ijk, block_size).place(u);

root.dense(ijk, n / block_size)
.dense(ijk, block_size).place(delta);

});

Kernel(relaxation).def([&]{
Parallelize(8);
For(y, [&](Expr i, Expr j, Expr k){

delta[i, j, k] = 1.0f/6.0f *
(u[i, j, k − 1] + u[i, j, k + 1] + u[i, j − 1, k]

+ u[i, j + 1, k] + u[i − 1, j, k] + u[i + 1, j, k])
− u[i, j, k];

});
});
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E Volumetric Path Tracing Renderings

A visual comparison of our rendering result compared to Tungsten’s is in Fig. 2-17.

F Simplification Pass Details

The simplification pass of the Taichi compiler does the following optimizations:

• Dead instruction elimination.

• Common subexpression elimination.

• Store forwarding.

• Useless local store elimination, i.e. delete stores whose results that are over-

written by future stores.

• Simplify if statements into conditional stores.

Two simplifications passes are applied to the program, before and after the

access lowering pass, respectively. The main goal of the first pass is to reduce the

number of instructions, while the second pass is mainly to optimize access. Note

that the access simplification is essentially a common subexpression elimination

pass over the micro-access instructions.

Other possible optimizations such as constant folding are left for the backend

compiler.
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Figure 2-16: A fluid animation using MLS-MPM with up to 3 million particles.
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Figure 2-17: Smoke in the shape of a bunny rendered with our volumetric path
tracer (left) and Tungsten’s (right). Both rendered with 128 samples per pixel and
a path length limit of 128.
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G Code Samples

G .1 MLS-MPM with Comments

#include <taichi/lang.h>
#include <taichi/util.h>
#include <taichi/visual/gui.h>
#include <taichi/common/bit.h>
#include <taichi/system/profiler.h>
#include "svd.h"
TC_NAMESPACE_BEGIN
using namespace Tlang;
auto mpm_benchmark = []() {

Program prog(Arch::gpu);
// No accessing lowering in this specific application is needed,

since
// the scratchpad optimizations already significantly reduce data

structure access
prog.config.lower_access = false;
// simulation constants
constexpr int dim = 3, n = 256, grid_block_size = 4, n_particles =

775196;
const real dt = 1e−5_f * 256 / n, dx = 1.0_f / n, inv_dx = 1.0_f / dx

;
auto particle_mass = 1.0_f, vol = 1.0_f, E = 1e4_f, nu = 0.3f;
real mu = E / (2 * (1 + nu)), lambda = E * nu / ((1 + nu) * (1 − 2 *

nu));
// simulation precision
auto f32 = DataType::f32;
// global variables
Vector particle_x(f32, dim), particle_v(f32, dim), grid_v(f32, dim);
Matrix particle_F(f32, dim, dim), particle_C(f32, dim, dim);
Global(grid_m, f32);
Global(l, i32);
Global(gravity_x, f32);
// load input
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int max_n_particles = 1024 * 1024;
std::vector<Vector3> p_x;
p_x.resize(n_particles);
std::vector<float> benchmark_particles;
auto f = fopen("dragon_particles.bin", "rb");
TC_ASSERT_INFO(f, "./dragon_particles.bin not found");
benchmark_particles.resize(n_particles * 3);
std::fread(benchmark_particles.data(), sizeof(float), n_particles *

3, f);
std::fclose(f);
for (int i = 0; i < n_particles; i++) {

for (int j = 0; j < dim; j++)
p_x[i][j] = benchmark_particles[i * dim + j];

}
bool particle_SOA = false;
// layout function call, materialize the data structure
layout([&]() {

auto i = Index(0), j = Index(1), k = Index(2), p = Index(3);
SNode *fork;
if (!particle_SOA)

fork = &root.dynamic(p, max_n_particles);
auto place = [&](Expr &expr) {

if (particle_SOA) {
root.dynamic(p, max_n_particles).place(expr);

} else {
fork−>place(expr);

}
};
for (int i = 0; i < dim; i++)

for (int j = 0; j < dim; j++)
place(particle_F(i, j));

for (int i = 0; i < dim; i++)
for (int j = 0; j < dim; j++)

place(particle_C(i, j));
for (int i = 0; i < dim; i++)

place(particle_x(i));
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for (int i = 0; i < dim; i++)
place(particle_v(i));

TC_ASSERT(n % grid_block_size == 0);
auto &block = root.dense({i, j, k}, n / grid_block_size).pointer();
constexpr bool block_soa = true;
if (block_soa) {

block.dense({i, j, k}, grid_block_size).place(grid_v(0));
block.dense({i, j, k}, grid_block_size).place(grid_v(1));
block.dense({i, j, k}, grid_block_size).place(grid_v(2));
block.dense({i, j, k}, grid_block_size).place(grid_m);

} else {
block.dense({i, j, k}, grid_block_size)

.place(grid_v(0), grid_v(1), grid_v(2), grid_m);
}
block.dynamic(p, pow<dim>(grid_block_size) * 128).place(l);
root.place(gravity_x);

});
// sort particle indices into their belonging block
Kernel(sort).def([&] {

BlockDim(1024);
For(particle_x(0), [&](Expr p) {

// compute the block coordinates
auto node_coord = floor(particle_x[p] * inv_dx − 0.5_f);
// insert the particle index
Append(l.parent(),

(cast<int32>(node_coord(0)), cast<int32>(node_coord(1)),
cast<int32>(node_coord(2))),

p);
});

});
// Particle to grid transfer
Kernel(p2g_sorted).def([&] {

// GPU block dim
BlockDim(128);
// allocate scratch pads for the velocity and mass channels
Cache(0, grid_v(0));
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Cache(0, grid_v(1));
Cache(0, grid_v(2));
Cache(0, grid_m);
For(l, [&](Expr i, Expr j, Expr k, Expr p_ptr) {

// for each particle, compute its momentum contribution and
scatter to surrounding grid nodes

auto p = Var(l[i, j, k, p_ptr]);
auto x = Var(particle_x[p]), v = Var(particle_v[p]),

C = Var(particle_C[p]);
auto base_coord = floor(inv_dx * x − 0.5_f), fx = x * inv_dx −

base_coord;
Matrix F = Var(Matrix::identity(dim) + dt * C) * particle_F[p];
particle_F[p] = F;
Vector w[] = {Var(0.5_f * sqr(1.5_f − fx)), Var(0.75_f − sqr(fx −

1.0_f)),
Var(0.5_f * sqr(fx − 0.5_f))};

auto svd = sifakis_svd(F);
auto R = Var(std::get<0>(svd) * transposed(std::get<2>(svd)));
auto sig = Var(std::get<1>(svd));
auto J = Var(sig(0) * sig(1) * sig(2));
auto cauchy = Var(2.0_f * mu * (F − R) * transposed(F) +

(Matrix::identity(3) * lambda) * (J − 1.0f) * J
);

auto affine =
Var(particle_mass * C − (4 * inv_dx * inv_dx * dt * vol) *

cauchy);
int low = 0, high = 1;
// The AssumeInRange intrinsics tells the compiler how big the

scratchpad should be
auto base_coord_i =

AssumeInRange(cast<int32>(base_coord(0)), i, low, high);
auto base_coord_j =

AssumeInRange(cast<int32>(base_coord(1)), j, low, high);
auto base_coord_k =

AssumeInRange(cast<int32>(base_coord(2)), k, low, high);
for (int a = 0; a < 3; a++)
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for (int b = 0; b < 3; b++)
for (int c = 0; c < 3; c++) {

auto dpos = dx * (Vector({a, b, c}).cast_elements<float32
>() − fx);

auto weight = w[a](0) * w[b](1) * w[c](2);
auto node = (base_coord_i + a, base_coord_j + b,

base_coord_k + c);
// Atomic adds for safe parallelism
Atomic(grid_v[node]) +=

weight * (particle_mass * v + affine * dpos);
Atomic(grid_m[node]) += weight * particle_mass;

}
});

});
// grid operations
Kernel(grid_op).def([&]() {

For(grid_m, [&](Expr i, Expr j, Expr k) {
auto v = Var(grid_v[i, j, k]);
auto m = Var(grid_m[i, j, k]);
int bound = 8;
// normalize momentum into velocity
If(m > 0.0f, [&]() {

auto inv_m = Var(1.0f / m);
v *= inv_m;
// apply gravity
auto f = gravity_x[Expr(0)];
v(1) += dt * (−1000_f + abs(f));
v(0) += dt * f;

});
// boundary conditions
v(0) = select(n − bound < i, min(v(0), Expr(0.0_f)), v(0));
v(1) = select(n − bound < j, min(v(1), Expr(0.0_f)), v(1));
v(2) = select(n − bound < k, min(v(2), Expr(0.0_f)), v(2));
v(0) = select(i < bound, max(v(0), Expr(0.0_f)), v(0));
v(2) = select(k < bound, max(v(2), Expr(0.0_f)), v(2));
If(j < bound, [&] { v(1) = max(v(1), Expr(0.0_f)); });
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grid_v[i, j, k] = v;
});

});
// grid to particle transfer
Kernel(g2p).def([&]() {

// GPU block dim
BlockDim(128);
// allocate scratchpads for the velocity channels
Cache(0, grid_v(0));
Cache(0, grid_v(1));
Cache(0, grid_v(2));
For(l, [&](Expr i, Expr j, Expr k, Expr p_ptr) {

auto p = Var(l[i, j, k, p_ptr]);
auto x = Var(particle_x[p]), v = Var(Vector(dim)),

C = Var(Matrix(dim, dim));
for (int i = 0; i < dim; i++) {

v(i) = Expr(0.0_f);
for (int j = 0; j < dim; j++) {
C(i, j) = Expr(0.0_f);

}
}
auto base_coord = floor(inv_dx * x − 0.5_f);
auto fx = x * inv_dx − base_coord;
Vector w[] = {Var(0.5_f * sqr(1.5_f − fx)), Var(0.75_f − sqr(fx −

1.0_f)),
Var(0.5_f * sqr(fx − 0.5_f))};

int low = 0, high = 1;
auto base_coord_i =

AssumeInRange(cast<int32>(base_coord(0)), i, low, high);
auto base_coord_j =

AssumeInRange(cast<int32>(base_coord(1)), j, low, high);
auto base_coord_k =

AssumeInRange(cast<int32>(base_coord(2)), k, low, high);
for (int p = 0; p < 3; p++)

for (int q = 0; q < 3; q++)
for (int r = 0; r < 3; r++) {
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auto dpos = Vector({p, q, r}).cast_elements<float32>() − fx
;

auto weight = w[p](0) * w[q](1) * w[r](2);
auto wv =

weight *
grid_v[base_coord_i + p, base_coord_j + q, base_coord_k

+ r];
v += wv;
C += outer_product(wv, dpos);

}
particle_C[p] = (4 * inv_dx) * C;
particle_v[p] = v;
particle_x[p] = x + dt * v;

});
});
// initial particle reordering
auto block_id = [&](Vector3 x) {

auto xi = (x * inv_dx − Vector3(0.5f)).floor().template cast<int>()
/

Vector3i(grid_block_size);
return xi.x * pow<2>(n / grid_block_size) + xi.y * n /

grid_block_size +
xi.z;

};
std::sort(p_x.begin(), p_x.end(),

[&](Vector3 a, Vector3 b) { return block_id(a) < block_id(b
); });

for (int i = 0; i < n_particles; i++) {
for (int d = 0; d < dim; d++) {

particle_x(d).val<float32>(i) = p_x[i][d];
}
particle_v(0).val<float32>(i) = 0._f;
particle_v(1).val<float32>(i) = −3.0_f;
particle_v(2).val<float32>(i) = 0._f;
for (int p = 0; p < dim; p++)

for (int q = 0; q < dim; q++)
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particle_F(p, q).val<float32>(i) = (p == q);
}
// main simulation loop
auto simulate_frame = [&]() {

grid_m.parent().parent().snode()−>clear_data_and_deactivate();
auto t = Time::get_time();
for (int f = 0; f < 200; f++) {

grid_m.parent().parent().snode()−>clear_data();
sort();
p2g_sorted();
grid_op();
g2p();

}
prog.profiler_print();
auto ms_per_substep = (Time::get_time() − t) / 200 * 1000;
TC_P(ms_per_substep);

};
// Visualization omitted...

};
TC_REGISTER_TASK(mpm_benchmark);
TC_NAMESPACE_END

See Hu et al.’s article [48] for the derivation of the algorithm.

G .2 FEM Linear Elasticity Kernel

This kernel is the implementation of Equation (1) of Liu et al.’s work [79].

Kernel(compute_Ap).def([&] {
For(Ap(0), [&](Expr i, Expr j, Expr k) {

auto cell_coord = Var(Vector({i, j, k}));
auto Ku_tmp = Var(Vector(dim));
Ku_tmp = Vector({0.0f, 0.0f, 0.0f});
// Unrolled for loop
for (int cell = 0; cell < pow<dim>(2); cell++) {

auto cell_offset =
Var(Vector({−(cell / 4), −(cell / 2 % 2), −(cell % 2)}));
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auto cell_lambda = lambda[cell_coord + cell_offset];
auto cell_mu = mu[cell_coord + cell_offset];
// Unrolled for loop
for (int node = 0; node < pow<dim>(2); node++) {

auto node_offset = Var(Vector({node / 4, node / 2 % 2, node %
2}));

// Unrolled for loop
for (int u = 0; u < dim; u++)
// Unrolled for loop
for (int v = 0; v < dim; v++)

Ku_tmp(u) += (cell_lambda * K_la[cell][node][u][v] +
cell_mu * K_mu[cell][node][u][v]) *

p[cell_coord + cell_offset + node_offset](v);
}

}
});

});

G .3 MGPCG Program

Please check out examples/cpp/mgpcg.cpp.

G .4 CNN Kernel

Kernel(forward).def([&] {
if (opt && gpu) {

if (cache_l1)
CacheL1(weights);

}
if (!gpu) {

Parallelize(8);
Vectorize(block_size);

} else {
BlockDim(256);

}
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For(layer2, [&](Expr i, Expr j, Expr k, Expr c_out) {
auto sum = Var(0.0f);
for (int c_in = 0; c_in < num_ch1; c_in++) {

for (int dx = −1; dx < 2; dx++) {
for (int dy = −1; dy < 2; dy++) {

for (int dz = −1; dz < 2; dz++) {
auto weight = weights[Expr(dx + 1), Expr(dy + 1), Expr(dz

+ 1),
c_in * num_ch2 + c_out];

sum += weight * layer1[i + dx, j + dy, k + dz, c_in];
}

}
}

}
layer2[i, j, k, c_out] = sum;

});
});

G .5 Volume Renderer

The code is at examples/cpp/volume_renderer.cpp.
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Chapter 3

Making Taichi Differentiable

In this chapter we present DiffTaichi, a differentiable programming extension to

Taichi, tailored for building high-performance differentiable physical simulators.

Based on the imperative programming language Taichi, DiffTaichi generates gra-

dients of simulation steps using source code transformations that preserve arith-

metic intensity (i.e., number of floating-point operations per byte fetched) and

parallelism. A light-weight tape is used to record the whole simulation program

structure and replay the gradient kernels in a reversed order, for end-to-end back-

propagation. We demonstrate the performance and productivity of DiffTaichi in

gradient-based learning and optimization tasks on 10 different physical simula-

tors. For example, a differentiable elastic object simulator written in DiffTaichi is

4.2× shorter than the hand-engineered CUDA version yet runs as fast, and is 188×

faster than the TensorFlow implementation. Using our differentiable programs,

neural network controllers are typically optimized within only tens of iterations.

We also replace the origin C++ frontend with a Python frontend for higher pro-

ductivity.
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1 Introduction

Figure 3-1: Left: DiffTaichi allows us to seamlessly integrate a neural network
(NN) controller and a physical simulation module, and update the weights of the
controller or the initial state parameterization (blue). Our simulations typically
have 512 ∼ 2048 time steps, and each time step has up to one thousand parallel
operations. Right: 10 differentiable simulators built with DiffTaichi.

Differentiable physical simulators are effective components in machine learning

systems. For example, [27] and [51] have shown that controller optimization with

differentiable simulators converges one to four orders of magnitude faster than

model-free reinforcement learning algorithms. The presence of differentiable phys-

ical simulators in the inner loop of these applications makes their performance

vitally important. Unfortunately, using existing tools it is difficult to implement

these simulators with high performance.

We present DiffTaichi, a new differentiable programming language for high per-

formance physical simulations on both CPU and GPU. It is based on the Taichi

programming language [49]. The DiffTaichi automatic differentiation system is

designed to suit key language features required by physical simulation, yet often

missing in existing differentiable programming tools, as detailed below:

Megakernels DiffTaichi uses a “megakernel” approach, allowing the program-

mer to naturally fuse multiple stages of computation into a single kernel, which

is later differentiated using source code transformations and just-in-time compila-

tion. Compared to the linear algebra operators in TensorFlow [2] and PyTorch [96],
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DiffTaichi kernels have higher arithmetic intensity and are therefore more efficient

for physical simulation tasks.

Imperative Parallel Programming In contrast to functional array programming

languages that are popular in modern deep learning [11, 2, 77], most traditional

physical simulation programs are written in imperative languages such as Fortran

and C++. DiffTaichi likewise adopts an imperative approach. The language pro-

vides parallel loops and control flows (such as “if” statements), which are widely

used constructs in physical simulations: they simplify common tasks such as han-

dling collisions, evaluating boundary conditions, and building iterative solvers.

Using an imperative style makes it easier to port existing physical simulation code

to DiffTaichi.

Flexible Indexing Existing parallel differentiable programming systems provide

element-wise operations on arrays of the same shape, e.g. c[i, j] = a[i, j] + b[i

, j]. However, many physical simulation operations, such as numerical stencils

and particle-grid interactions are not element-wise. Common simulation patterns

such as y[p[i] * 2, j] = x[q[i + j]] can only be expressed with unintuitive scatter

/gather operations in these existing systems, which are not only inefficient but also

hard to develop and maintain. On the other hand, in DiffTaichi, the programmer

directly manipulates array elements via arbitrary indexing, thus allowing partial

updates of global arrays and making these common simulation patterns naturally

expressible. The explicit indexing syntax also makes it easy for the compiler to

perform access optimizations [49].

The three requirements motivated us to design a tailored two-scale automatic

differentiation system, which makes DiffTaichi especially suitable for developing

complex and high-performance differentiable physical simulators, possibly with

neural network controllers (Fig. 3-1, left). Using DiffTaichi, we are able to quickly

implement and automatically differentiate 10 physical simulators1, covering rigid

1Our language, compiler, and simulator code is open-source. All the results in this work can be
reproduced by a single Python script. Visual results in this work are presented in the supplemental
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bodies, deformable objects, and fluids (Fig. 3-1, right). A comprehensive com-

parison between DiffTaichiand other differentiable programming tools is in Ap-

pendix A .

2 Recap: The Taichi Programming Language

DiffTaichi is based on the Taichi programming language [49]. Taichi is an imper-

ative programming language embedded in C++14. It delivers both high perfor-

mance and high productivity on modern hardware. The key design that distin-

guishes Taichi from other imperative programming languages such as C++/CUDA

is the decoupling of computation from data structures. This allows programmers

to easily switch between different data layouts and access data structures with

indices (i.e. x[i, j, k]), as if they are normal dense arrays, regardless of the under-

lying layout. The Taichi compiler then takes both the data structure and algorithm

information to apply performance optimizations. Taichi provides “parallel-for"

loops as a first-class construct. These designs make Taichi especially suitable for

writing high-performance physical simulators. For more details, readers are re-

ferred to [49].

The DiffTaichi language frontend is embedded in Python, and a Python AST

transformer compiles DiffTaichi code to Taichi intermediate representation (IR).

Unlike Python, the DiffTaichi language is compiled, statically-typed, parallel, and

differentiable. We extend the Taichi compiler to further compile and automatically

differentiate the generated Taichi IR into forward and backward executables.

We demonstrate the language using a mass-spring simulator, with

three springs and three mass points, as shown right. In this section

we introduce the forward simulator using the DiffTaichi frontend of

Taichi, which is an easier-to-use wrapper of the Taichi C++14 frontend.

video.
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Allocating Global Variables Firstly we allocate a set of global tensors to store

the simulation state. These tensors include a scalar loss of type float32, 2D tensors

x, v, force of size steps×n_springs and type float32x2, and 1D arrays of size n_spring

for spring properties: spring_anchor_a (int32), spring_anchor_b (int32), spring_length (

float32).

Defining Kernels A mass-spring system is modeled by Hooke’s law F = 𝑘(‖x𝑎 − x𝑏‖2−

𝑙0)
x𝑎−x𝑏

‖x𝑎−x𝑏‖2
where 𝑘 is the spring stiffness, F is spring force, x𝑎 and x𝑏 are the posi-

tions of two mass points, and 𝑙0 is the rest length. The following kernel loops over

all the springs and scatters forces to mass points:

@ti.kernel
def apply_spring_force(t: ti.i32):

# Kernels can have parameters. Here t is a parameter with type int32.
for i in range(n_springs): # A parallel for, preferably on GPU
a, b = spring_anchor_a[i], spring_anchor_b[i]
x_a, x_b = x[t − 1, a], x[t − 1, b]
dist = x_a − x_b
length = dist.norm() + 1e−4
F = (length − spring_length[i]) * spring_stiffness * dist / length
# Apply spring impulses to mass points.
force[t, a] += −F # "+=" is atomic by default
force[t, b] += F

For each particle 𝑖, we use semi-implicit Euler time integration with damping:

v𝑡,𝑖 = 𝑒−Δ𝑡𝛼v𝑡−1,𝑖 + Δ𝑡
𝑚𝑖
F𝑡,𝑖,x𝑡,𝑖 = x𝑡−1,𝑖 + ∆𝑡v𝑡,𝑖, where v𝑡,𝑖,x𝑡,𝑖,𝑚𝑖 are the velocity,

position and mass of particle 𝑖 at time step 𝑡, respectively. 𝛼 is a damping factor.

The kernel is as follows:

@ti.kernel
def time_integrate(t: ti.i32):

for i in range(n_objects):
s = math.exp(−dt * damping) # Compile−time evaluation since dt and damping are

constants
v[t, i] = s * v[t − 1, i] + dt * force[t, i] / mass # mass = 1 in this example
x[t, i] = x[t − 1, i] + dt * v[t, i]

Assembling the Forward Simulator With these components, we define the for-

ward time integration:
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Figure 3-2: Left: The DiffTaichi system. We reuse some infrastructure (white boxes)
from Taichi, while the blue boxes are our extensions for differentiable program-
ming. Right: The tape records kernel launches and replays the gradient kernels in
reverse order during backpropagation.

def forward():
for t in range(1, steps):
apply_spring_force(t)
time_integrate(t)

3 Automatically Differentiating Physical Simulators

in Taichi

The main goal of DiffTaichi’s automatic differentiation (AD) system is to generate

gradient simulators automatically with minimal code changes to the traditional

forward simulators.

Design Decision Source Code Transformation (SCT) [38] and Tracing [128] are

common choices when designing AD systems. In our setting, using SCT to dif-

ferentiate a whole simulator with thousands of time steps, results in high perfor-

mance yet poor flexibility and long compilation time. On the other hand, naively

adopting tracing provides flexibility yet poor performance, since the “megakernel"

structure is not preserved during backpropagation. To get both performance and

flexibility, we developed a two-scale automatic differentiation system (Figure 3-2):

we use SCT for differentiating within kernels, and use a light-weight tape that only

stores function pointers and arguments for end-to-end simulation differentiation.

The global tensors are natural checkpoints for gradient evaluation.
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Assumption Unlike functional programming languages where immutable out-

put buffers are generated, imperative programming allows programmers to freely

modify global tensors. To make automatic differentiation well-defined under this

setting, we make the following assumption on imperative kernels:

Global Data Access Rules:

1) If a global tensor element is written more than once, then starting from

the second write, the write must come in the form of an atomic add (“ac-

cumulation”).

2) No read accesses happen to a global tensor element, until its accumula-

tion is done.

In forward simulators, programmers may make subtle changes to satisfy the

rules. For instance, in the mass-spring simulation example, we record the whole

history of x and v, instead of keeping only the latest values. The memory consump-

tion issues caused by this can be alleviated via checkpointing, as discussed later in

Appendix D .

With these assumptions, kernels will not overwrite the outputs of each other,

and the goal of AD is clear: given a primal kernel 𝑓 that takes as input 𝑋1, 𝑋2, . . . , 𝑋𝑛

and outputs (or accumulates to) 𝑌1, 𝑌2, . . . , 𝑌𝑚, the generated gradient (adjoint)

kernel 𝑓 * should take as input 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 𝑌 *
1 , 𝑌

*
2 , . . . , 𝑌

*
𝑚 and accumulate

gradient contributions to 𝑋*
1 , 𝑋

*
2 , . . . , 𝑋

*
𝑚, where each 𝑋*

𝑖 is an adjoint of 𝑋𝑖, i.e.

𝜕(loss)/𝜕𝑋𝑖.

Storage Control of Adjoint Tensors Users can specify the storage of adjoint ten-

sors using the Taichi data structure description language [49], as if they are primal

tensors. We also provide ti.root.lazy_grad() to automatically place the adjoint ten-

sors following the layout of their primals.
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3 .1 Local AD: Differentiating Taichi Kernels using Source Code

Transforms

A typical Taichi kernel consists of multiple levels of for loops and a body block. To

make later AD easier, we introduce two basic code transforms to simplify the loop

body, as detailed below.

int a = 0;
if (b > 0) { a = b;}
else { a = 2b;}

a = a + 1;
return a;

// flatten branching
int a = 0;
a = select(b > 0, b, 2b);
a = a + 1
return a;

// eliminate mutable var

ssa1 = select(b>0, b, 2b);
ssa2 = ssa1 + 1
return ssa2;

Figure 3-3: Simple IR preprocessing before running the AD source code transform
(left to right). Demonstrated in C++. The actual Taichi IR is often more complex.
Containing loops are ignored.

Flatten Branching In physical simulation branches are common, e.g., when im-

plementing boundary conditions and collisions. To simplify the reverse-mode AD

pass, we first replace “if” statements with ternary operators select(cond, value_if_true

, value_if_false), whose gradients are clearly defined (Fig. 3-3, middle). This is a

common transformation in program vectorization (e.g. [63, 99]).

Eliminate Mutable Local Variables After removing branching, we end up with

straight-line loop bodies. To further simplify the IR and make the procedure truly

single-assignment, we apply a series of local variable store forwarding transforms,

until the mutable local variables can be fully eliminated (Fig. 3-3, right).

After these two custom IR simplification transforms, DiffTaichi only has to dif-

ferentiate the straight-line code without mutable variables, which it achieves with

reverse-mode AD, using a standard source code transformation [38]. More details

on this transform are in Appendix B .

Loops Most loops in physical simulation are parallel loops, and during AD we

preserve the parallel loop structures. For loops that are not explicitly marked as

98



parallel, we reverse the loop order during AD transforms. We do not support

loops that carry a mutating local variable since that would require a complex and

costly run-time stack to maintain the history of local variables. Instead, users are

instructed to employ global variables that satisfy the global data access rules.

Parallelism and Thread Safety For forward simulation, we inherit the “parallel-

for" construct from Taichi to map each loop iteration onto CPU/GPU threads. Pro-

grammers use atomic operations for thread safety. Our system can automatically

differentiate these atomic operations. Gradient contributions in backward kernels

are accumulated to the adjoint tensors via atomic adds.

3 .2 Global AD: End-to-end Backpropagation using A Light-Weight

Tape

We construct a tape (Fig. 3-2, right) of the kernel execution so that gradient ker-

nels can be replayed in a reversed order. The tape is very light-weight: since the

intermediate results are stored in global tensors, during forward simulation the

tape only records kernel names and the (scalar) input parameters, unlike other dif-

ferentiable functional array systems where all the intermediate buffers have to be

recorded by the tape. Whenever a DiffTaichi kernel is launched, we append the

kernel function pointer and parameters to the tape. When evaluating gradients,

we traverse the reversed tape, and invoke the gradient kernels with the recorded

parameters. Note that DiffTaichi AD is evaluating gradients with respect to input

global tensors instead of the input parameters.

Learning/Optimization with Gradients Now we revisit the mass-spring exam-

ple and make it differentiable for optimization. Suppose the goal is to optimize

the rest lengths of the springs so that the triangle area formed by the three springs

becomes 0.2 at the end of the simulation. We first define the loss function:
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@ti.kernel
def compute_loss(t: ti.i32):

x01 = x[t, 0] − x[t, 1]
x02 = x[t, 0] − x[t, 2]
# Triangle area from cross product
area = ti.abs(0.5 * (x01[0]*x02[1] − x01[1]*x02[0]))
target_area = 0.2
loss[None] = ti.sqr(area − target_area)
# Everything in Taichi is a tensor.
# "loss" is a scalar (0−D tensor), thereby indexed with [None].

The programmer uses ti.Tape to memorize forward kernel launches. It auto-

matically replays the gradients of these kernels in reverse for backpropagation. Ini-

tially the springs have lengths [0.1, 0.1, 0.14], and after optimization the rest lengths

are [0.600, 0.600, 0.529]. This means the springs will expand the triangle according

to Hooke’s law and form a larger triangle:
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def main():
for iter in range(200):

with ti.Tape(loss):
forward()
compute_loss(steps − 1)

print(’Iter=’, iter)
print(’Loss=’,loss[None])
# Gradient descent
for i in range(n_springs):

spring_length[i] −=
lr * spring_length.grad[i]

0 10 20
Gradient descent iterations

0.000

0.002

0.004

0.006

0.008
Lo

ss

Spring Rest Length Optimization

Complex Kernels Sometimes the user may want to override the gradients pro-

vided by the compiler. For example, when differentiating a 3D singular value de-

composition done with an iterative solver, it is better to use a manually engineered

SVD derivative subroutine for better stability. We provide two more decorators

ti.complex_kernel and ti.complex_kernel_grad to overwrite the default automatic dif-

ferentiation, as detailed in Appendix C . Apart from custom gradients, complex

kernels can also be used to implement checkpointing, as detailed in Appendix D .

4 Evaluation

We evaluate DiffTaichi on 10 different physical simulators covering large-scale con-

tinuum and small-scale rigid body simulations. All results can be reproduced with

the provided script. The dynamic/optimization processes are visualized in the
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supplemental video. In this section we focus our discussions on three simulators.

More details on the simulators are in Appendix E .

4 .1 Differentiable Continuum Mechanics for Elastic Objects [diffmpm

]

First, we build a differentiable continuum simulation for soft robotics applications.

The physical system is governed by momentum and mass conservation, i.e. 𝜌𝐷v
𝐷𝑡

=

∇ · 𝜎 + 𝜌g, 𝐷𝜌
𝐷𝑡

+ 𝜌∇ · v = 0. We follow ChainQueen’s implementation [51] and use

the moving least squares material point method [48] to simulate the system. We

were able to easily translate the original CUDA simulator into DiffTaichi syntax.

Using this simulator and an open-loop controller, we can easily train a soft robot

to move forward (Fig. 3-1, diffmpm).

Performance and Productivity Compared with manual gradient implementa-

tions in [51], getting gradients in DiffTaichi is effortless. As a result, the Diff-

Taichi implementation is 4.2× shorter in terms of lines of code, and runs almost

as fast; compared with TensorFlow, DiffTaichi code is 1.7× shorter and 188× faster

(Table 3.1). The Tensorflow implementation is verbose due to the heavy use of

tf.gather_nd/scatter_nd and array transposing and broadcasting.

Table 3.1: diffmpm performance comparison on an NVIDIA GTX 1080 Ti GPU. We
benchmark in 2D using 6.4K particles. For the lines of code, we only include the
essential implementation, excluding boilerplate code.

Approach Forward Time Backward Time Total Time # Lines of Code

TensorFlow 13.20 ms 35.70 ms 48.90 ms (188.×) 190

CUDA 0.10 ms 0.14 ms 0.24 ms (0.92×) 460

DiffTaichi 0.11 ms 0.15 ms 0.26 ms (1.00×) 110
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Table 3.2: smoke benchmark against Autograd, PyTorch, and JAX. We used a 110 ×
110 grid and 100 time steps, each with 6 Jacobi pressure projections. . Note that the
Autograd program uses float64 precision, which approximately doubles the run
time.

Approach Forward Time Backward Time Total Time # Essential LoC

PyTorch (CPU, f32) 405 ms 328 ms 733 ms (13.8×) 74
PyTorch (GPU, f32) 254 ms 457 ms 711 ms (13.4×) 74
Autograd (CPU, f64) 307 ms 1197 ms 1504 ms (28.4×) 51
JAX (GPU, f32) 24 ms 75 ms 99 ms (1.9×) 90
DiffTaichi (CPU, f32) 66 ms 132 ms 198 ms (3.7×) 75
DiffTaichi (GPU, f32) 24 ms 29 ms 53 ms (1.0×) 75

4 .2 Differentiable Incompressible Fluid Simulator [smoke]

We implemented a smoke simulator (Fig. 3-1, smoke) with semi-Lagrangian advec-

tion [111] and implicit pressure projection, following the example in Autograd [83].

Using gradient descent optimization on the initial velocity field, we are able to find

a velocity field that changes the pattern of the fluid to a target image (Fig. 3-7a in

Appendix). We compare the performance of our system against PyTorch, Auto-

grad, and JAX in Table 3.2. Note that as an example from the Autograd library,

this grid-based simulator is intentionally simplified to suit traditional array-based

programs. For example, a periodic boundary condition is used so that Autograd

can represent it using numpy.roll, without any branching. Still, Taichi delivers higher

performance than these array-based systems. The whole program takes 10 seconds

to run in DiffTaichi on a GPU, and 2 seconds are spent on JIT. JAX JIT compilation

takes 2 minutes.

4 .3 Differentiable rigid body simulators [rigid_body]

We built an impulse-based [17] differentiable rigid body simulator (Fig. 3-1, rigid_body

) for optimizing robot controllers. This simulator supports rigid body collision and

friction, spring forces, joints, and actuation. The simulation is end-to-end differ-

entiable except for a countable number of discontinuities. Interestingly, although

the forward simulator works well, naively differentiating it with DiffTaichi leads

to completely misleading gradients, due to the rigid body collisions. We discuss
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the cause and solution of this issue below.

Improving collision gradients Consider the rigid ball example in Fig. 3-4 (left),

where a rigid ball collides with a friction-less ground. Gravity is ignored, and due

to conservation of kinetic energy the ball keeps a constant speed even after this

elastic collision.

In the forward simulation, using a small ∆𝑡 often leads to a reasonable result, as

done in many physics simulators. Lowering the initial ball height will increase the

final ball height, since there is less distance to travel before the ball hits the ground

and more after (see the loss curves in Fig.3-4, middle right). However, using a

naive time integrator, no matter how small ∆𝑡 is, the evaluated gradient of final

height w.r.t. initial height will be 1 instead of −1. This counter-intuitive behavior

is due to the fact that time discretization itself is not differentiated by the compiler.

Fig. 3-4 explains this effect in greater detail.

Figure 3-4: How gradients can go wrong with naive time integrators. For clarity
we use a large ∆𝑡 here. Left: Since collision detection only happens at multiples
of ∆𝑡 (2∆𝑡 in this case), lowering the initial position of the ball (light blue) leads
to a lowered final position. Middle Left: By improving the time integrator to sup-
port continuous time of impact (TOI), collisions can be detected at any time, e.g.
1.9∆𝑡 (light red). Now the blue ball ends up higher than the green one. Middle
Right: Although the two time integration techniques lead to almost identical for-
ward results (in practice ∆𝑡 is small), the naive time integrator gives an incorrect
gradient of 1, but adding TOI yields the correct gradient. Please see our supple-
mental video for a better demonstration. Right: When zooming in, the loss of
the naive integrator is decreasing, and the saw-tooth pattern explains the positive
gradients.

We propose a simple solution of adding continuous collision resolution (see, for

example, [105]), which considers precise time of impact (TOI), to the forward pro-

gram (Fig. 3-4, middle left). Although it barely improves the forward simulation

(Fig. 3-4, middle right), the gradient will be corrected effectively (Fig. 3-4, right).
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Figure 3-5: Adding TOI greatly improves gradient and optimization quality. Each
experiment is repeated five times.

The details of continuous collision detection are in Appendix F . In real-world sim-

ulators, we find the TOI technique leads to significant improvement in gradient

quality in controller optimization tasks (Fig. 3-5). Having TOI or not barely affects

forward simulation: in the supplemental video, we show that a robot controller

optimized in a simulator with TOI, actually works well in a simulator without

TOI.

The takeaway is, differentiating physical simulators does not always yield useful gra-

dients of the physical system being simulated, even if the simulator does forward simulation

well. In Appendix G , we discuss some additional gradient issues we have encoun-

tered.

5 Related Work

Differentiable programming The recent rise of deep learning has motivated the

development of differentiable programming libraries for deep NNs, most notably

auto-differentiation frameworks such as Theano [11], TensorFlow [2] and PyTorch [96].

However, physical simulation requires complex and customizable operations due

to the intrinsic computational irregularity. Using the aforementioned frameworks,

programmers have to compose these coarse-grained basic operations into desired

complex operations. Doing so often leads to unsatisfactory performance.

Earlier work on automatic differentiation focuses on transforming existing scalar

code to obtain derivatives (e.g. [119], [40], [97]). A recent trend has emerged for

modern programming languages to support differentiable function transforma-
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tions through annotation (e.g. [54], [127]). These frameworks enable differentiat-

ing general programming languages, yet they provide limited parallelism.

Differentiable array programming languages such as Halide [104, 77], Auto-

grad [83], JAX [14], and Enoki [58] operate on arrays instead of scalars to utilize

parallelism. Instead of operating on arrays that are immutable, DiffTaichi uses an

imperative style with flexible indexing to make porting existing physical simula-

tion algorithms easier.

Differentiable Physical Simulators Building differentiable simulators for robotics

and machine learning has recently increased in popularity. Without differentiable

programming, [10], [18] and [87] used NNs to approximate the physical process

and used the NN gradients as the approximate simulation gradients. [29] and [28]

used Theano and PyTorch respectively to build differentiable rigid body simula-

tors. [108] differentiates position-based fluid using custom CUDA kernels. [100]

used a differentiable rigid body simulator for manipulating physically based ani-

mations. The ChainQueen differentiable elastic object simulator [51] implements

forward and gradient versions of continuum mechanics in hand-written CUDA

kernels, leading to performance that is two orders of magnitude higher than a pure

TensorFlow implementation. [78] built a differentiable cloth simulator for material

estimation and motion control. The deep learning community also often incorpo-

rates differentiable rendering operations (OpenDR [81], N3MR [64], redner [76],

Mitsuba 2 [94]) to learn from 3D scenes.

6 Conclusion

We have presented DiffTaichi, a differentiable programming language designed

specifically for building high-performance differentiable physical simulators. Mo-

tivated by the need for supporting megakernels, imperative programming, and

flexible indexing, we developed a tailored two-scale automatic differentiation sys-

tem. We used DiffTaichi to build 10 simulators and integrated them into deep neu-
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ral networks, which proved the performance and productivity of DiffTaichi over

existing systems. We hope our programming language can greatly lower the bar-

rier of future research on differentiable physical simulation in the machine learning

and robotics communities.
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Appendix for chapter 2

A Comparison with Existing AutoDiff Systems

Workload differences between deep learning and differentiable physical simu-

lation Existing differentiable programming tools for deep learning are typically

centered around large data blobs. For example, in AlexNet, the second convolu-

tion layer has size 27× 27× 128× 128. These tools usually provide users with both

low-level operations such as tensor add and mul, and high-level operations such as

convolution. The bottleneck of typical deep-learning-based computer vision tasks

are convolutions, so the provided high-level operations, with very high arithmetic

intensity2, can fully exploit hardware capability. However, the provided opera-

tions are “atoms” of these differentiable programming tools, and cannot be further

customized. Users often have to use low-level operations to compose their desired

high-level operations. This introduces a lot of temporary buffers, and potentially

excessive GPU kernel launches. As shown in [51], a pure TensorFlow implementa-

tion of a complex physical simulator is 132× slower than a CUDA implementation,

due to excessive GPU kernel launches and the lack of producer-consumer locality3.

The table below compares DiffTaichi with existing tools for build differentiable

physical simulators.

2FLOPs per byte loaded from/stored to main memory.
3The CUDA kernels in [51] have much higher arithmetic intensity compared to the TensorFlow

computational graph system. In other words, when implementing in CUDA immediate results are
cached in registers, while in TensorFlow they are “cached" in main memory.
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Table 3.3: Comparisons between DiffTaichi and other differentiable programming
tools. Note that this table only discusses features related to differentiable phys-
ical simulation, and the other tools may not have been designed for this purpose.
For example, PyTorch and TensorFlow are designed for classical deep learning
tasks and have proven successful in their target domains. Also note that the XLA
backend of TensorFlow and JIT feature of PyTorch allow them to fuse operators to
some extent, but for simulation we want complete operator fusion within megak-
ernels. “Swift” AD [127] is partially implemented as of November 2019. “Julia”
refers to [54].

Feature DiffTaichi PyTorch TensorFlow Enoki JAX Halide Julia Swift

GPU Megakernels X X X X

Imperative Scheme X X X X

Parallelism X X X X X X

Flexible Indexing X X X X

B Differentating Straight-line Taichi Kernels using Source

Code Transform

Primal and adjoint kernels Recall that in DiffTaichi, (primal) kernels are opera-

tors that take as input multiple tensors (e.g., 𝑋, 𝑌 ) and output another set of ten-

sors. Mathematically, kernel 𝑓 has the form

𝑓(𝑋0, 𝑋1, .., 𝑋𝑛) = 𝑌0, 𝑌1, . . . , 𝑌𝑚.

Kernels usually execute uniform operations on these tensors. When it comes to

differentiable programming, a loss function is defined on the final output tensors.

The gradients of the loss function “𝐿” with respect to each tensor are stored in

adjoint tensors and computed via adjoint kernels.

The adjoint tensor of (primal) tensor 𝑋𝑖𝑗𝑘 is denoted as 𝑋*
𝑖𝑗𝑘. Its entries are

defined by 𝑋*
𝑖𝑗𝑘 = 𝜕𝐿/𝜕𝑋𝑖𝑗𝑘. At a high level, our automatic differentiation (AD)
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system transforms a primal kernel into its adjoint form. Mathematically,

(primal) 𝑓(𝑋0, 𝑋1, .., 𝑋𝑛) = 𝑌0, 𝑌1, . . . , 𝑌𝑚

⎮⎮⌄ Reverse-Mode Automatic Differentiation

(adjoint) 𝑓 *(𝑋0, 𝑋1, .., 𝑋𝑛, 𝑌
*
0 , 𝑌

*
1 , . . . , 𝑌

*
𝑚) = 𝑋*

0 , 𝑋
*
1 , .., 𝑋

*
𝑛.

Differentiating within kernels: The “make_adjoint” pass (reverse-mode AD)

After the preprocessing passes, which flatten branching and eliminate mutable lo-

cal variables, the “make_adjoint” pass transforms a forward evaluation (primal)

kernel into its gradient accumulation (“adjoint”) kernel. It takes straight-line code

directly and operates on the hierarchical intermediate representation (IR) of Taichi4

. Multiple outer for loops are allowed for the primal kernel. The Taichi compiler

will distribute these parallel iterations onto CPU/GPU threads.

During the “make_adjoint” pass, for each SSA instruction, a local adjoint vari-

able will be allocated for gradient contribution accumulation. The compiler will

traverse the statements in reverse order, and accumulate the gradients to the cor-

responding adjoint local variable.

For example, a 1D array operation 𝑦𝑖 = sin𝑥2
𝑖 has its IR representation as fol-

lows:

for i in range(0, 16):
%1 = load x[i]
%2 = mul %1, %1
%3 = sin(%2)
y[i] = %3

The above primal kernel will be transformed into the following adjoint kernel:

for i in range(0, 16):
// adjoint variables
%1adj = alloca 0.0
%2adj = alloca 0.0

4Taichi uses a hierarchical static single assignment (SSA) intermediate representation (IR) as its
internal program representation. The Taichi compiler applies multiple transform passes to lower
and simplify the SSA IR in order to get high-performance binary code.
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%3adj = alloca 0.0
// original forward computation
%1 = load x[i]
%2 = mul %1 %1
%3 = sin(%2)
// reverse accumulation
%4 = load y_adj[i]
%3adj += %4
%5 = cos(%2)
%2adj += %3adj * %5
%1adj += 2 * %1 * %2adj
atomic add x_adj[i], %1adj

Note that for clarity the transformed code is not strictly SSA here. The actual

IR has more instructions. A following simplification pass will simplify redundant

instructions generated by the AD pass.

C Complex Kernels

Here we demonstrated how to use complex kernels to override the automatic dif-

ferentiation system. We use singular value decomposition (SVD) of 3 × 3 matrices

(M = UΣV*) as an example. Fast SVD solvers used in physical simulation are

often iterative, yet directly evaluate the gradient of this iterative process is likely

numerically unstable. Suppose we use [85] as the forward SVD solver, and use the

method in [59] (Section 2.1.1.2) to evalute the gradients, the complex kernels are

used as follows:

# Do Singular Value Decomposition (SVD) on n matrices
@ti.kernel
def iterative_svd(num_iterations: ti.f32):

for i in range(n):
input = matrix_M[i]
for iter in range(num_iterations):

... iteratively solve SVD using McAdams et al. 2011 ...
matrix_U[i] = ...
matrix_Sigma[i] = ...
matrix_V[i] = ...

# A custom complex kernel that wraps the iterative SVD kernel
@ti.complex_kernel
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def svd_forward(num_iterations):
iterative_svd(num_iterations)

@ti.kernel
def svd_gradient():

for i in range(n):
... Implement, for example, section 2.1.1.2 of Jiang (2015) ...

# A complex kernel that is registered as the svd_forward complex kernel
@ti.complex_kernel_grad(svd_forward)
def svd_backward(num_iterations):

# differentiave SVD
svd_gradient()

D Checkpointing

In this section we demonstrate how to use checkpointing via complex kernels. The

goal of checkpointing is to use recomputation to save memory space. We demon-

strate this using the diffmpm example, whose simulation cycle consists of particle to

grid transform (p2g), grid boundary conditions (grid_op), and grid to particle trans-

form (g2p). We assume the simulation has 𝑂(𝑛) time steps.

D .1 Recomputation within Time steps

A naive implementation without checkpointing allocates 𝑂(𝑛) copied of the sim-

ulation grid, which can cost a lot of memory space. Actually, if we recompute the

grid states during the backward simulation time step by redoing p2g and grid_op,

we can reused the grid states and allocate only one copy. This checkpointing opti-

mization is demonstrated in the code below:

@ti.complex_kernel
def advance(s):

clear_grid()
compute_actuation(s)
p2g(s)
grid_op()
g2p(s)
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@ti.complex_kernel_grad(advance)
def advance_grad(s):

clear_grid()
p2g(s)
grid_op() # recompute the grid

g2p.grad(s)
grid_op.grad()
p2g.grad(s)
compute_actuation.grad(s)

D .2 Segment-Wise Recomputation

Given a simulation with 𝑂(𝑛) time steps, if all simulation steps are recorded, the

space consumption is 𝑂(𝑛). This linear space consumption is sometimes too large

for high-resolution simulations with long time horizon. Fortunately, we can re-

duce the space consumption using a segment-wise checkpointing trick: We split

the simulation into segments of 𝑆 steps, and in forward simulation store only the

first simulation state in each segment. During backpropagation when we need the

remaining simulation states in a segment, we recompute them based on the first

state in that segment.

Note that if the segment size is 𝑂(𝑆), then we only need to store 𝑂(𝑛/𝑆) simula-

tion steps for checkpoints and 𝑂(𝑆) reusable simulation steps for backpropagation

within segments. The total space consumption is 𝑂(𝑆 + 𝑛/𝑆). Setting 𝑆 = 𝑂(
√
𝑛)

reduces memory consumption from 𝑂(𝑛) to 𝑂(
√
𝑛). The time complexity remains

𝑂(𝑛).
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E Details on 10 Differentiable Simulators

E .1 Differentiable Continuum Mechanics for Elastic Objects [diffmpm

]

Figure 3-6: Controller optimization with our differentiable continuum simulators.
Left: the 2D robot with four muscles. Middle: A 3D robot with 16 muscles and
30K particles crawling on the ground. Right: We couple the robot (30K particles)
and the liquid simulator (13K particles), and optimize its open-loop controller in
this difficult situation.

E .2 Differentiable liquid simulator [liquid]

We follow the weakly compressible fluid model in [116] and implemented a 3D

differentiable liquid simulator within the [diffmpm3d] framework. Our liquid simu-

lation can be two-way coupled with elastic object simulation (Figure 3-6, right).

E .3 Differentiable Incompressible Fluid Simulator [smoke]

(a) smoke (b) wave
Figure 3-7: a: (Left to right) with an optimized initial smoke velocity field, the
fluid changes its pattern to a “Taichi" symbol. b: Unoptimized (top three) and
optimized (bottom three) waves at time step 3, 189, and 255.

Backpropagating Through Pressure Projection We followed the baseline im-

plementation in Autograd, and used 10 Jacobi iterations for pressure projection.
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Technically, 10 Jacobi iterations are not sufficient to make the velocity field fully

divergence-free. However, in this example, it does a decent job, and we are able to

successfully backpropagate through the unrolled 10 Jacobi iterations.

In larger-scale simulations, 10 Jacobi iterations are likely not sufficient. Assum-

ing the Poisson solve is done by an iterative solver (e.g. multigrid preconditioned

conjugate gradients, MGPCG) with 5 multigrid levels and 50 conjugate gradient it-

erations, then automatic differentiation will likely not be able to provide gradients

with sufficient numerical accuracy across this long iterative process. The accuracy

is likely worse when conjugate gradients present, as they are known to numeri-

cally drift as the number of iterations increases. In this case, the user can still use

DiffTaichi to implement the forward MGPCG solver, while implementing the back-

ward part of the Poisson solve manually, likely using adjoint methods [32]. Diff-

Taichi provides “complex kernels” to override the built-in AD system, as shown in

Appendix C .

E .4 Differentiable Height Field Shallow Water Simulator [wave]

We adopt the wave equation in [121] to model shallow water height field evolution:

�̈� = 𝑐2∇2𝑢 + 𝑐𝛼∇2�̇�, (3.1)

where 𝑢 is the height of shallow water, 𝑐 is the “speed of sound” and 𝛼 is a damping

coefficient. We use the �̇� and �̈� notations for the first and second order partial

derivatives of 𝑢 w.r.t time 𝑡 respectively.

[121] used the finite different time-domain (FDTD) method [71] to discretize

Eqn. 3.1, yielding an update scheme:

𝑢𝑡,𝑖,𝑗 = 2𝑢𝑡−1,𝑖,𝑗 + (𝑐2∆𝑡2 + 𝑐𝛼∆𝑡)(∇2𝑢)𝑡−1,𝑖,𝑗 − 𝑝𝑡−2,𝑖,𝑗 − 𝑐𝛼∆𝑡(∇2𝑢)𝑡−2,𝑖,𝑗,

where

(∇2𝑢)𝑡,𝑖,𝑗 =
−4𝑢𝑡,𝑖,𝑗 + 𝑢𝑡,𝑖,𝑗+1 + 𝑢𝑡,𝑖,𝑗−1 + 𝑢𝑡,𝑖+1,𝑗 + 𝑢𝑡,𝑖−1,𝑗

∆𝑥2
.
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We implemented this wave simulator in DiffTaichi to simulate shallow water.

We used a grid of resolution 128 × 128 and 256 time steps. The loss function is

defined as

𝐿 =
∑︁
𝑖,𝑗

∆𝑥2(𝑢𝑇,𝑖,𝑗 − �̂�𝑖,𝑗)
2

where 𝑇 is the final time step, and �̂� is the target height field. 200 gradient

descent iterations are then used to optimize the initial height field. We set �̂� to

be the pattern “Taichi", and Fig. 3-7b shows the unoptimized and optimized wave

evolution.

We set the “Taichi" symbol as the target pattern. Fig. 3-7b shows the unop-

timized and optimized final wave patterns. More details on discretization is in

Appendix E .

E .5 Differentiable Mass-Spring system [mass_spring]

We extend the mass-spring system in the main text with ground collision and a

NN controller. The time-of-impact fix is implemented for improved gradients. The

optimization goal is to maximize the distance moved forward with 2048 time steps.

We designed three mass-spring robots as shown in Fig. 3-8 (left).

E .6 Differentiable Billiard Simulator [billiards]

A differentiable rigid body simulator is built for optimizing a billiards strategy

(Fig. 3-8, middle). We used forward Euler for the billiard ball motion and conser-

vation of momentum and kinetic energy for collision resolution.
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Figure 3-8: Left: Three mass-spring robots. The red and blue springs are actuated.
A two layer NN is used as controller. . Middle: Optimizing billiards. The op-
timizer adjusts the initial position and velocity of the white ball, so that the blue
ball will reach the target destination (black dot). Right: Optimizing a robot walk-
ing. The rigid robot is controlled with a NN controller and learned to walk in 20
gradient descent iterations.

E .7 Differentiable Rigid Body Simulator [rigid_body]

Are rigid body collisions differentiable? It is worth noting that discontinuities

can happen in rigid body collisions, and at a countable number of discontinuities

the objective function is non-differentiable. However, apart from these discon-

tinuities, the process is still differentiable almost everywhere. The situation of

rigid body collision is somewhat similar to the “ReLU” activation function in neu-

ral networks: at point 𝑥 = 0, ReLU is not differentiable (although continuous),

yet it is still widely adopted. The rigid body simulation cases are more complex

than ReLU, as we have not only non-differentiable points, but also discontinuous

points. Based on our experiments, in these impulse-based rigid body simulators,

we still find the gradients useful for optimization despite the discontinuities, espe-

cially with our time-of-impact fix.

E .8 Differentiable Water Renderer [water_renderer]

We implemented differentiable renderers to visualize the refracting water surfaces

from wave. We use finite differences to reconstruct the water surface models based

on the input height field and refract camera rays to sample the images, using bi-

linear interpolation for meaningful gradients. To show our system works well

with other differentiable programming systems, we use an adversarial optimiza-
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tion goal: fool VGG-16 into thinking that the refracted squirrel image is a goldfish

(Fig. 3-9).

Figure 3-9: This three-stage program (simulation, rendering, recognition) is end-
to-end differentiable. Our optimized initial water height field evolves to form a
refraction pattern that perturbs the image into one that fools VGG16 (99.91% gold-
fish).

E .9 Differentiable Volume Renderer [volume_renderer]

We implemented a basic volume renderer that simply uses ray marching (we ig-

nore light, scattering, etc.) to integrate a density field over each camera ray. In this

task, we render a number of target images from different viewpoints, with the cam-

era rotated around the given volume. The goal is then to optimize for the density

field of the volume that would produce these target images: we render candidate

images from the same viewpoints and compute an L2 loss between them and the

target images, before performing gradient descent on the density field (Fig. 3-10).

Essentially, this demonstrates how to use gradients to reconstruct 3D objects out

of X-ray photos in a brute-force manner. Other approaches to this task include

algebraic reconstruction techniques (ART) [36].

Figure 3-10: Volume rendering of bunny shaped density field. Left: 3 (of the 7)
target images. Right: optimized images of the middle bunny after iteration 2, 50,
100.
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E .10 Differentiable Electric Field Simulator [electric]

Recall Coulomb’s law: F = 𝑘 𝑞1𝑞2
𝑟2

r̂. In the right figure, there are eight

electrodes carrying static charge. The red ball also carries static charge.

The controller, which is a two-layer neural network, tries to manipulate

the electrodes so that the red ball follows the path of the blue ball. The

bigger the electrode, the more positive charge it carries.

F Fixing Gradients with Time of Impact and Contin-

uous Collision Detection

Here is a naive time integrator in the mass-spring system example:

@ti.kernel
def advance(t: ti.i32):

for i in range(n_objects):
s = math.exp(−dt * damping)
new_v = s * v[t − 1, i] + dt * gravity * ti.Vector([0.0, 1.0])
old_x = x[t − 1, i]
depth = old_x[1] − ground_height
if depth < 0 and new_v[1] < 0:

# assuming a sticky ground (infinite coefficient of friction)
new_v[0] = 0
new_v[1] = 0

# Without considering time of impact, we assume the whole dt uses new_v
new_x = old_x + dt * new_v

v[t, i] = new_v
x[t, i] = new_x

Implementing TOI in this system is relative straightforward:

@ti.kernel
def advance_toi(t: ti.i32):

for i in range(n_objects):
s = math.exp(−dt * damping)
old_v = s * v[t − 1, i] + dt * gravity * ti.Vector([0.0, 1.0])
old_x = x[t − 1, i]
new_x = old_x + dt * old_v
toi = 0.0
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new_v = old_v
if new_x[1] < ground_height and old_v[1] < −1e−4:

# The 1e−4 safe guard is important for numerical stability
toi = −(old_x[1] − ground_height) / old_v[1] # Compute the time of impact
new_v = ti.Vector([0.0, 0.0])

# Note that with time of impact, dt is divided into two parts,
# the first part using old_v, and second part using new_v
new_x = old_x + toi * old_v + (dt − toi) * new_v

v[t, i] = new_v
x[t, i] = new_x

In rigid body simulation, the implementation follows the same idea yet is slightly

more complex. Please refer to rigid_body.py for more details.

G Additional Tips on Gradient Behaviors

Initialization matters: flat lands and local minima in physical processes A triv-

ial example of objective flat land is in billiards. Without proper initialization, gra-

dient descent will make no progress since gradients are zero (Fig. 3-11). Also note

the local minimum near (−5, 0.03).
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Figure 3-11: Left: Scanning initial velocity in the billiard example. Middle: Most
initial angles yield a flat objective (final distance between the blue ball and black
destination) of 0.065, since the white ball does not collide with any other balls and
imposes no effect on the pink ball via the chain reaction. Right: A zoomed-in view
of the middle figure. The complex collisions lead to a lot of local minimums.

In mass_spring and rigid_body, once the robot falls down, gradient descent will

quickly become trapped. A robot on the ground will make no further progress, no
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matter how it changes its controller. This leads to a more non-trivial local mini-

mum and zero gradient case.

Ideal physical models are only “ideal”: discontinuities and singularities Real-

world macroscopic physical processes are usually continuous. However, building

upon ideal physical models, even in the forward physical simulation results can

contain discontinuities. For example, in a rigid body model with friction, chang-

ing the initial rotation of the box can lead to different corners hitting the ground

first, and result in a discontinuity (Fig. 3-12). In electric and mass_spring, due to the
1
𝑟2

and 1
𝑟

terms, when 𝑟 → 0, gradients can be very inaccurate due to numerical pre-

cision issues. Note that 𝑑(1/𝑟)/𝑑𝑟 = −1/𝑟2, and the gradient is more numerically

problematic than the primal for a small 𝑟. Safeguarding 𝑟 is critically important for

gradient stability.
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Figure 3-12: Friction in rigid body with collision is a common source of disconti-
nuity. In this scene a rigid body hits the ground. Slightly rotating the rigid body
changes which corner (A/B) hits the ground first, and different normal/friction
impulses will be applied to the rigid body. This leads to a discontinuity in its final
position (loss=final y coordinate). Please see our supplemental video for more
details.
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Chapter 4

Asynchronous execution and

inter-kernel optimizations

Writing high-performance graphics code that fully utilizes parallel processors such

as GPUs takes skilled and time-consuming performance engineering. For example,

when writing a high-performance GPU physical simulator, issues such as kernel

launching overhead and poor memory locality often lead to low processor utiliza-

tion. We seek to increase programmer productivity and improve performance by

introducing an automatic inter-kernel optimization approach for parallel compu-

tation, in an imperative context where data structures are mutable. Existing im-

perative programming systems such as CUDA and Taichi launch computational

kernels in an eager fashion, severely restricting the ability to perform inter-kernel

optimizations such as inter-kernel dead code elimination and kernel fusion. Our

approach preserves the benefits of eager approaches while performs on-the-fly

analysis of possible inter-kernel optimizations before actually launching kernels.

Inter-kernel optimization is especially relevant for tasks beyond traditional dense

arrays computation, as exhibited by modern computer graphics and machine learn-

ing workloads, such as physical simulation with spatial sparsity and automatic gra-

dient evaluation via differentiable programming. We show that these emerging com-

putational patterns lead to new and exciting automatic optimization opportunities.

For example, by analyzing computation programs across kernel boundaries, our
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Figure 4-1: Top left: In existing parallel imperative programming systems (such
as CUDA and Taichi [49]), imperative computational kernels are eagerly launched,
leaving a tiny room for the optimizer to optimize beyond a single kernel. Bottom left:
In our work, we accumulate kernels in an execution buffer, only flushing the ex-
ecution queue when necessary. This allows the optimizer to gain more context
and conduct optimization beyond a single kernel. We dynamically build a depen-
dency graph (“state-flow graph") of kernels for easy analysis, so that computation
kernels can be optimized at a inter-kernel level just in time. Right: After a suite
of domain-specific optimization passes including list generation removal, sparse
data structure activation elimination, and kernel fusion, kernels are much better
optimized. As a result, the inter-kernel optimized programs run 1.87× faster on
GPUs, without the user modifying any of the computation code.

optimizer can eliminate unnecessary voxel list generation tasks for parallel itera-

tions on sparse data structures, accelerate sparse data structure access, and remove

unused gradient evaluations. To provide the maximum programming flexibility,

our optimization system conducts on-the-fly optimization on a large window of

computational graph consisting of parallel kernels. To analyze imperative pro-

grams with mutable data structures, we propose a state-flow graph formulation of

imperative programs, which describes kernel relationships and enables easy analy-

sis and optimization. The optimized parallel kernels are then just-in-time compiled

in parallel, and dispatched to parallel devices such as multi-threaded CPU and

massively parallel GPUs. Without any computational code modification, our new sys-

tem leads to 4.02× fewer kernel launches and 1.87× speed up on our GPU bench-

marks, including sparse-grid physical simulation and differentiable programming.
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1 Introduction

The tension between the ease of programming and performance is challenging in

many computational applications including physical simulation. This is especially

true on modern hardware architectures such as GPUs. The implementation of a

piece of clean, modular code often leads to severe inefficiencies due to overheads

such as kernel launches for logically unrelated tasks on GPUs.

Automatic compiler optimizations can alleviate this performance-productivity

tension. Among them, inter-kernel optimizations, which analyze and improve per-

formance across kernel boundaries, are effective ways to speed up GPU code, yet

if not done automatically, implementing these optimizations can be laborious. For

example, an experienced GPU programmer may manually merge logically unrelated

kernels to reduce kernel launching overhead and improve data locality, at the cost

of devoting more low-level engineering efforts and sacrificing code readability.

Imperative GPU programming Domain-Specific Languages (DSLs), such as Taichi [49]

for physical simulation applications, partially alleviate the performance-productivity

trade-off. However, their existence further underscores the importance of auto-

matic inter-kernel optimizations. This is because (1) DSL compilers usually do a

great job regarding intra-kernel optimizations, leaving little room for further im-

provement within the kernel, (2) these compilers, as layers of abstraction, tend

to introduce auxiliary computation kernels that are invisible to programmers and

are impossible to optimize manually, and (3) the exotic patterns in DSLs are often

different enough and they have not yet been addressed in the classical general-

purpose compiler community.

We present an automatic inter-kernel optimization system for parallel and im-

perative programming, especially on GPUs. Our system not only serves as a flex-

ible on-the-fly optimization infrastructure for general-purpose, imperative GPU

programming systems, but also supports optimizing domain-specific computa-

tions such as spatially sparse simulation [89, 110, 49] and differentiable program-

ming [47, 58, 76].
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Optimizing across function and kernel boundaries is an existing technique in

traditional ahead-of-time compilers (see, for example, gcc WHOPR [16]), and func-

tional array-based parallel JIT systems, especially deep learning systems such as

TensorFlow [3] and JAX [14]. However, three major challenges exist when apply-

ing the idea of inter-kernel optimization to modern graphics programming sys-

tems and applications, especially physical simulation:

1. Graphics programs are mostly imperative, has mutable data buffers, and al-

lows partial updates of these buffers. Unlike systems that rely on dense, im-

mutable, and holistic arrays (“tensors” in systems like TensorFlow [3]), par-

tial updates and mutable, sparse buffers can lead to difficulties when analyz-

ing an imperative graphics program.

2. Domain-specific features of graphics programming systems, such as spatial

sparsity, can lead to further complexities to the analysis and optimization

process. For example, while tools for analyzing dense array programs are

well established [70], their counterparts in spatially sparse array computations

are largely underexploited.

3. Imperative GPU programming systems often eagerly execute computational

tasks. This eager execution scheme leaves little room to analyze and optimize

beyond a single kernel.

In this work, we propose a state-flow formulation of imperative GPU programs,

to analyze those programs with partial and in-place updates. “States” in our for-

mulation refer not only to memory bytes, but also to domain-specific and abstract

descriptions of data, such as the topology of the sparse data structures and auxil-

iary lists of active voxels. We build a state-flow graph (SFG) on-the-fly consisting of

pending kernels, to depict kernel relationships. The rich expressiveness of SFGs

allows us to conduct domain-specific inter-kernel optimizations, such as fusing

kernels on dynamic sparse data structures, eliminate unnecessary voxel list gener-

ation tasks for parallel iterations on sparse data structures, accelerate sparse data

structure access, and remove unused gradient evaluations.
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To make the optimizer see more than a single kernel at a time, we built an

asynchronous execution engine that maintains a window of kernels, leaving room

for performance optimizations before launching the kernels. The execution engine

also enables parallel compilation, which significantly reduces the JIT compilation

time.

With productivity and performance in mind, our system is practically designed

according to the following guidelines:

• Imperative programming. Graphics programs, especially physical simula-

tion, are usually computation hungry and need imperative programming,

which is closer to hardware compared to functional programming, to extract

the maximum possible performance out of parallel processors. Our system

sticks to the imperative programming setting for maximum compatibility

with existing graphics algorithms.

• Spatially sparse data structures. Recent work in graphics [89, 110, 49] demon-

strates the efficacy of sparse data strictures in simulation and rendering. Our

systems need to support these widely adopted data storage infrastructures

for performance and scalability. Meanwhile, we expect the versatile and mu-

table sparse data structures serve as a strong test case of the expressiveness

of the state-flow graph for inter-kernel optimizations.

• Transparent to users. We wish users can get the benefits of inter-kernel op-

timizations for free. No code modification is needed in the computational

kernels for users to leverage our optimizations.

• Optimize on-the-fly for flexibility. Graphics and numerical computation ap-

plications, especially iterative solvers, tend to have data-dependent control

flows. For example, whether a conjugated gradients solver should stop iter-

ating, depends on the residual of the last iteration, which is computed using

a kernel. To keep control-flow flexibility at the kernel level, we dynamically

build a state-flow graph and optimize in a kernel window of reasonable size.
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• Compile just-in-time (JIT). JIT delays the need of value of “compile-time con-

stant” values. For example, ∆𝑡 in physical simulators is often a runtime vari-

able in ahead-of-time compilation, but with JIT, ∆𝑡 would be a compile-time

constant. This allows the compiler to do more optimizations such as con-

stant folding. More importantly, the optimized kernels need a JIT system to

compile into hardware executables.

• Problems of all scales matter. Graphics applications cover a wide range of

problem sizes. For example, a particle simulation may cover from 2, 000 to

100, 000, 000 [124] particles. For small-scale tasks, compilation time may be

the bottleneck; for large scale tasks, computation time is more important. Our

asynchronous execution engine enables parallel compilation to reduce the JIT

compilation delay.

• GPU first. General-purpose GPU programming is becoming increasingly

popular, and the need for high-quality of graphics computation is often only

achievable on massively GPUs. While our system can indeed improve mul-

ticore CPU performance, we put more priority on GPU computation when

making design decisions.

We summarize our contributions as follows:

1. A state-flow formulation of imperative parallel computation. The resulted

state-flow graphs (SFGs) serve as a high-level intermediate representation (IR)

of GPU programs. It can model not only general-purpose GPU programs,

but also domain-specific ones, such as those with spatial sparsity.

2. An asynchronous task execution engine that exposes inter-kernel optimiza-

tion opportunities and enables parallel compilation;

3. Most importantly, an inter-kernel optimizer for asynchronous spatially sparse

and differentiable computation. The optimizer can conduct general-purpose

inter-kernel optimizations such as dead store elimination and kernel fusion,
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as well as domain-specific optimizations such as list generation removal and

sparse data structure activation demotion;

4. A systematic study of the resulted system. Based on the benchmarks, we

show our inter-kernel optimizer delivers 1.87× (geometric mean) wall-clock

time improvements and 4.02× fewer GPU kernel launches compared to the

reference system [49]. All these can be achieved without the programmer modi-

fying a single line of kernel code.

We pick Taichi [49] as the starting point to build our system, partially reusing

its compiler infrastructure.

2 Related Work

Spatially sparse computation The idea of leveraging spatial sparsity in graph-

ics originates from popular sparse data structures including VDB [91, 41, 131] and

SPGrid [110, 35]. While these data structures have demonstrated effective com-

putation and storage benefits over dense arrays, writing programs that leverage

them is not an easy task. Taichi [49] provides a language abstraction that allows

using these data structures as if they are dense, and runtime systems that auto-

matically handle parallel voxel iteration and memory management. These designs

benefit the end users, but may end up with more computation. These redundant

jobs would need an inter-kernel analysis to optimize.

Another thread of work on sparse computation is sparse linear algebra lan-

guages, such as TACO [68, 23], which can effectively generate kernels for Einstein

summations on sparse matrices and tensors. Instead of explicitly building the

sparse matrices, some simulators use linear algebra computations, which are of-

ten the more effective ways for high-performance linear algebra solves in physical

simulations (see, for example [79]).

Array data-flow analysis The static-single assignment (SSA) form has been a

very popular IR structure. SSA forms are designed for scalar variables, and it can-
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not directly represent array states, where partial updates may happen. Array SSA

forms have been proposed and successfully adopted in parallelization [70] and ar-

ray privatization [84]. However, related work in this topic is mostly focused on

dense arrays. Our high-level IR system represents not only array partial updates,

but also the topology changes in sparse arrays.

Whole-Program Optimization (WPO) WPO is also known as Inter-procedural

optimization (IPO). For ahead-of-time compilation, IPO typically happens at link

time, so sometimes it is also called link-time optimization (LTO). Many existing

compilers, such as gcc, MSVC, and clang, already support LTO and WHO (see,

e.g., gcc WHOPR [16]). While WPO is extensively explored in classical compiling

systems, it is still underexploited for spatially sparse computation. The unique

computational pattern in sparse computation brings higher complexity and the

need for a unified high-level intermediate representation for analysis and opti-

mization.

Computational graph optimization in deep learning frameworks A feed-forward

deep neural (DNN) network can be naturally represented as directed acyclic graphs

(DAG). This leads to a straightforward mapping between DNNs and the compu-

tational graph: immutable, dense feature maps directly map to the graph edges, and

operators (such as convolutions, max pooling, and element-wise add) maps to the

graph nodes. Consequently, modern deep learning frameworks (TensorFlow [3],

PyTorch [?], ONNX [?], Theano [117]) have widely adopted the computational

graph to represent the DNN models. High-level optimizations on the computa-

tional graph have been a popular feature in deep learning frameworks. The HLO

IR of XLA and PyTorch GLOW [107] are representative examples. Based on the

computational graph, traditional computer optimizations such as operator fusion,

dead code elimination (DCE), common subexpression elimination (CSE) can be

applied. We refer the readers to [75] for a good survey.

In deep learning frameworks such as TensorFlow [3], every operation creates
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a new, immutable buffer (“tensor”), and DNNs are essentially data flow of fea-

ture maps. In graphics applications, however, we have to adopt an imperative

programming paradigm and support in-place updates. This is not only because

graphics programmers have been accustomed to using imperative programming

(e.g., C++, CUDA, and GLSL) for decades, but also because in-place operations

in imperative programming offer significant performance advantages in graphics

applications, such as physical simulation, since in-place operations are closer to

hardware compared to functional programming.

Our system is similar to these systems in that a high-level graph-based IR is

used, yet the high-level IR must consider its partial updates, sparsity, and “megak-

ernel” (i.e., many-in-many-out, hundreds of instructions per kernel) natures of

sparse computation code.

GPU code optimization Extensive research has been done on code optimization

for GPUs. For example, Hong et al. [42] optimize SASS via emulation and iden-

tifying bottlenecks. Filipovič et al. [33] optimize CUDA kernels via kernel fusion

on operations in the forms of map, reduce, and demonstrated speed up on dense

BLAS operations. Bo et al. [101] proposed an automatic fusion framework for

image processing DSLs. However, an on-the-fly inter-kernel optimization system

on GPU imperative programming models that provides maximum flexibility for

general-purpose computation is still missing.

Differentiable array programming in graphics and AI Many differentiable pro-

gramming tools operate on dense arrays, instead of scalars, to exploit parallelism

[77, 83, 14, 58]. Admittedly, array-based programming interfaces, usually with

limitations on partial updates, are easier to analyze. However, expressing many

graphics computational patterns (such as scattering particles onto a regular grid)

using arrays may not be a performance option.
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Physical Simulation DSLs Developing high-performance physics solvers is chal-

lenging, and a lot of low-level engineering is needed to exploit the capabilities

of modern parallel processors. High-level DSLs models simulations as meshes

(Liszt [30]), sparse linear algebra [69], and relational data models [13].

A lower-level system that is more closely related to our work is the Taichi pro-

gramming language [49]. Taichi is a DSL with first-class support for sparse data

structures, a critical component of modern high-performance physical simulators.

Taichi also supports differentiable programming [47], allowing developers to eval-

uate gradients of physical simulators for machine learning and optimization pur-

poses. In the next section, we briefly cover core Taichi features related to this work.

3 Taichi background: Imperative, megakernel, sparse,

and differentiable programming

Taichi [49] is a new programming language for spatially sparse and differentiable

visual computing. As a domain-specific language embedded in Python, Taichi’s

just-in-time compiler transforms compute-intensive kernels (“Megakernels”, sim-

ilar to a __global__ GPU kernel in CUDA) into parallel executables. Users can

flexibly launch the kernels using Python. In many simulation workloads, Taichi

programs can achieve comparable performance to handwritten CUDA code, us-

ing only 1/10 lines of code (see, for example, benchmarks in [49]).

Taichi is almost as expressive as any other general-purpose GPU programming

language such as CUDA. Meanwhile, as an open-source system, it provides oppor-

tunities for researchers to experiment with new compiler optimizations. Moreover,

Taichi has first-class supports for two popular topics in the graphics programming

community: (a) using sparse data structures to accelerate physical simulation, and

(b) make graphics systems differentiable. All these features make it a suitable piece

of infrastructure for our study.

We recap key Taichi features related to this chapter below.
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3 .1 Data-oriented programming

field is a key concept in Taichi that represents data. A field is essentially a one- to

eight-dimensional tensor. Each element of the tensor can be a scalar (e.g., density),

a small vector (e.g., velocity), or a small matrix (e.g., stress tensor). Externally, a

field in Taichi is flat: field elements are always accessed via an x[i, j, k]-style

syntax, regardless of its data layout. Internally, however, data are organized in

hierarchical tree structures, described via structural nodes (SNodes). See Fig. 4-2 as

an example.

Commonly used SNodes in Taichi are dense, bitmasked, pointer, and dynamic

[49]. They can easily compose into complex data structures that are dense or

sparse.

Note that the field shapes are known at compile-time, allowing the compiler to

easily conduct aliasing analysis.

3 .2 Sparse programming

A field in Taichi can be either dense (similar to a CUDA array) or spatially sparse

(such as a VDB [89] or SPGrid [110]). The support for spatial sparsity [49] is a

unique feature of Taichi. Most 3D graphics data (especially those stored on voxel

grids) are spatially sparse, and Taichi has first-class support for sparse data struc-

tures to leverage this property for acceleration.

To make sparse data structures as intuitive to use as dense data structures, var-

ious designs are made on the syntax, compiler, and runtime levels:

1. Sparse struct-for loops allow users to iterate over active voxels of sparse data

structures easily. For example, the following code loops over a 3D sparse

field:

for i, j, k in x:
x[i, j, k] += 1
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While iterating over only active parts of a sparse data structure improves per-

formance, implementing such iteration in parallel is highly non-trivial, since

the sparse data structure trees are often highly unbalanced. Therefore, in-

stead of recursively looping on the tree, we generate lists of active tree nodes,

layer by layer, from top to bottom. Such list generation (Fig. 4-2, left branch)

process is the key mechanism to achieve load-balanced parallel sparse for-

loops.

Figure 4-2: Left branch: The structure of ti.root.pointer(ti.i, 4).dense(ti.
i, 2).place(x) in Taichi, a two-level 1D sparse data structure. The first level,
pointer(ti.i, 4), is a four-cell pointer array. Each cell of the pointer array can be
a null pointer if it is inactive. The second level, dense(ti.i, 2), is dense blocks
with two cells each. Highlighted cells are active. Lists of each layer are defined to
be collections of active node indices. Right branch: The same structure for field
y, which is completely inactive for now.

Note that lists themselves are generated via GPU kernels. In certain cases,

the time it takes to generate the lists is comparable to that of the essential

parallel iteration.

2. Activation on write ensures sparse data structure nodes are implicitly acti-

vated on writing. For example, the following code generates a 2 × 2 × 2

downsampled sparse field y from a higher-resolution sparse field x:

for i, j, k in x:
y[i // 2, j // 2, k // 2] += x[i, j, k]

Note that the corresponding voxels of y may not be active before this for loop.
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Taichi will automatically activate y[i // 2, j // 2, k // 2] and zero-fill

the voxels. See Figure 4-3 for an example.

Figure 4-3: Execution result of simple program for i in x: y[i // 2] += 1. y
[1] and y[3] are activated on write. Because dense nodes cannot be only partially
active, y[0] and y[2] are also activated.

3. Automatic memory management frees users from worrying about memory al-

location and deallocation. Taichi’s high-performance memory allocator will

automatically manage sparse data structure nodes.

4. Programmable megakernels allow users to easily write parallel programs with

very high flexibility and rich expressiveness. Taichi kernels allow complex

control flows - in fact, Taichi programmers can easily write a recursive ray

tracer (See, e.g., [49]).

5. Automatic parallelization. Taichi kernels are decomposed into tasks that are se-

rial or parallel. For example, in the following code, the for loops are auto-

matically parallelized:

@ti.kernel
def reduce():

s = 0 # Serial
for i in range(128):

s += x[i] # Parallel range−for
for i in y:

s += y[i] # Parallel struct−for
print(s) # Serial
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4 A State-flow formulation of Sparse and Differen-

tiable Computation

In imperative programming, Program = State + Compute. In graphics applications,

“state” usually means more than data per se. This is because complex acceler-

ation data structures are often used in high-performance graphics code, such as

bounding volume hierarchy (BVH) for ray tracing and sparse grids in simulation.

Graphics computation is often coupled with these data structures. Specifically in

spatially sparse and differentiable programming, “state” means way more than

values of fields, and “compute” means more than GPU kernels that operate on

data. For example, iterating over sparse data structures in parallel, implicitly leads

to auxiliary computation on list generation and node activation, and differentiable

programming automatically creates a gradient version of the forward computa-

tion. These patterns create more challenges in modeling and analyzing graphics

programs.

For now, let us assume we know the whole execution history of a Taichi pro-

gram. We reformulate the imperative computation scheme of Taichi into a col-

lection of states and tasks. To systematically optimize imperative GPU programs,

especially those with spatial sparsity support, we formulate a Taichi program as

a state-flow graph (SFG), which is a directed acyclic graph (DAG) with nodes be-

ing tasks and edges being states. This results in a state flow formulation and a

high-level intermediate representation (IR). Scalar data-flow analysis is well stud-

ied in optimizing compilers (see, for example, [66]), and SFGs can be considered

an extended version of data-flow analysis to handle auxiliary states such as lists in

spatially sparse computation.

States States split the holistic description of a Taichi program into a suitable gran-

ularity for analysis and optimization. For SNodes that are spatially sparse, we

must decompose the holistic descriptions of their data, topology, and auxiliary struc-

tures into the following states:
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• A value state simply represents the collection of numerical values stored in

the field. Note that in data structure trees of Taichi, only the leaf nodes (i.e.,

place SNodes) store numerical values. Value states are the most basic states,

have the same meaning as those in data flow optimization, and are useful in

almost all GPU programming systems. It is worth noting that in sparse data

structures, every voxel has a numerical value, even if the voxel is sparse - in

that case, the inactive voxel has an ambient value 0.

• A mask state of a SNode records the activation information of all its cells

(Fig. 4-4, right). Mask states must be handled as first-class primitives in our

SFG system for domain-specific optimizations. Masks are scattered in vari-

ous forms in the data structure. They are either indicated by a bit in a bitmask

SNode, or a non-null pointer for the pointer SNode. Mask is a unified con-

cept for different data structures. Therefore we need to generate a unified

element list for struct-fors on different structures.

• A list state of an SNode represents the data structure nodes maintained by the

runtime system. Recall that Taichi needs to generate/consume data struc-

ture node lists for load-balancing parallel iterations over sparse data struc-

ture nodes. List generation tasks take the list and mask states of the parent

SNode to generate the list of the current SNode. Lists are consumed by (par-

allel) struct-fors. See [49] for more details on load balancing and parallel fors

on unbalanced trees.

• An allocator state represents the state of Taichi’s memory allocator. For com-

putation that allocates/deallocates sparse data structure nodes, the allocator

states are marked as modified.

The relationship between value, mask, and list state is depicted in Fig. 4-4.

Tasks A Taichi kernel may be decomposed into multiple parallel tasks (GPU ker-

nels). Without loss of generality, we assume that a Taichi kernel corresponds to a

137



Figure 4-4: State decomposition of a two-level sparse array, containing a sparse
intermediate layer and a dense leaf layer. Note that the value state covers all pixels,
even if the pixel is inactive. In other words, whenever an access reads a pixel from
the sparse array, the mask state will first be queried. If the mask state says the
pixel is inactive, 0 will be returned. Otherwise, the system queries the value state
and returns the corresponding value. Here we omit allocator states for simplicity.
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single task and generates a single GPU kernel1. Each Taichi task has input edges

(input states), output edges (modified states). It also maintains its metadata, such

as loop ranges (range/struct-fors). These edges and metadata will be used for

inter-kernel optimization.

4 .1 State-flow chains

Now let us focus on a single state. For example, we use value state 𝑆 (Fig. 4-5),

which is manipulated by kernels (tasks) 𝑓, 𝑔, 𝑝, ℎ, 𝑞. Note that 𝑓, ℎ and 𝑞 read and

write the value state 𝑆, yet 𝑔 and 𝑝 only reads the value of 𝑆. Every time we modify

a state, a new “copy”2 is created. Clearly, only the latest writer holds the most up to

date version of a state, while readers only fetch the latest version without making

a new copy. If we only consider the writers, we get a chain structure for each state,

with a few branches for readers. Fig. 4-5 provides a concrete example.

It is worth pointing out that the 𝜑 node in the SSA form is not needed in SFC.

In the execution model of Taichi, the kernel-level control flow is directly evaluated

inside the host language (Python), rather than being part of the DAG.

For a single state, we can easily build a chain (which is also a DAG). We call the

chain structure a “state-flow chain” (SFC).

4 .2 State-flow graphs

A Taichi program can easily have hundreds of states. Here we introduce state-

flow graphs (SFGs), which are essentially state-flow chains sticking together, or

unioning their nodes and edges (Fig. 4-6). SFGs completely describe the relation-

ship between tasks in Taichi. Since unions of DAGs following the same topological

order are still DAGs, SFGs are DAGs too.

The SFG serves as the IR for inter-kernel optimizations. The SFG formulation

1We use the term “task” and “kernel” interchangeably for a serial/parallel execution job on
GPUs.

2Note that in imperative programming, the modifications are actually applied in place, yet for
optimization purposes we assume that we always create a new virtual copy.
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Figure 4-5: A state-flow chain of value state 𝑆. The edges in the state-flow chain
depict the task dependency relationships. Note that each state-flow chain always
has a main branch (write-after-write, red in the figure) and a few reader branches
(read-after-write & write-after-read). On the main branch, each node (task) creates
a new version of the state. We classify write-after-write and read-after-write as
data-flow edges, since there are data produced and consumed. Write-after-read
edges are classified as dependency edges.

Figure 4-6: A state-flow graph, by definition, is a union of state-flow chains of all
the states used in a program. Note that each edge represents a state and a node
represents a task. Two tasks may be connected by more than two edges, each edge
representing a state.

140



allows us to use well-established graph theory languages for compiler optimiza-

tion. For example, our task fusion optimization uses reachability analysis in graphs

(section 6 .4).

Whenever a task is inserted into the execution queue, we dynamically create an

SFG node and create the corresponding dependency edges. SFGs have two useful

properties:

1. Order independency. Any topologically ordered task sequence leads to the

same program behavior.

2. Reconstruction invariance, corollary of “order independency”. Any topo-

logically ordered task sequence of G constructs the same graph G.

“Reconstruction invariance” is particularly useful when manipulating the graph

nodes. For example, to remove a node from SFG, simply topologically sort the

SFG nodes, remove the node from the sorted list, and rebuild the SFG. This frees

us from worrying about how to handle edges that are connected to the removed

node, or to update the latest set of owners of the affected states in the system.

5 Lazy and asynchronous GPU kernel launches

In existing parallel programming languages such as CUDA, kernels are ahead of

time (AOT) compiled and launched immediately once called on the host3. How-

ever, we need two more execution mechanisms to make inter-kernel optimizations

work: just-in-time (JIT) compilation and (kernel-level) lazy evaluation.

JIT compilation The issue with AOT compilation is that, at launch time, opti-

mizers only have access to low-level assembly code (e.g., PTX or SASS), which

is too fine-grained and fragmented for further optimizations. Fortunately, Taichi

not only provides a JIT system, but also allows to lower the IR halfway to a level

3Existing GPU programming systems such as CUDA and OpenGL already provide some asyn-
chrony between the CPU host and GPU devices, but we need more asynchrony for inter-kernel
optimizations, as described later in this section.
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that is very suitable for inter-kernel optimizations (see Fig 5-1, bottom left, where

inter-kernel optimizations happen at the middle-end IR).

Asynchronous launching In CUDA, GPU kernel execution is asynchronous, but

GPU kernel launches are still eager. The eager launching mechanism prevents

cross-kernel optimization from happening, since the system only sees one kernel at a

time. Therefore, to make the SFG practically useful, we need to hold the SFG nodes

from executing before inter-kernel optimizations.

We developed an asynchronous execution engine for GPU programs. The ex-

isting Taichi system eagerly launches the kernels, but we can modify the system,

making it asynchronous, and maintain a list of kernels to compile and run lazily.

This opens up opportunities for inter-kernel optimizations detailed in the follow-

ing section.

By-product: parallel compilation A drawback of JIT compilation is its compila-

tion time. Note that ahead of time compilation does not have this issue. In fact, as

Taichi becomes more widely adopted, the compiler needs to deal with programs

with increasing instructions and optimization passes, in extreme cases compila-

tion can take up to 70% of program end-to-end run time. In the previous eager

execution scheme, a serial thread is used to compile and launch these kernels. In

contrast, since the asynchronous execution engine sees multiple kernels at a time,

parallel compilation can be done easily, which can significantly reduce wall-clock

time spent on the compilation. The effectiveness of parallel compilation is evalu-

ated in section 8 .6.

6 Optimize across kernel boundaries

With the state-flow graph IR that describes the task relationships, and the asyn-

chronous execution engine that saves the tasks from being executed too early, we

can finally conduct analysis and optimizations on the state-flow graph. In this sec-
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tion, we discuss four effective inter-kernel optimizations on spatially sparse com-

putation programs.

6 .1 A minimal example

Here we show a trivial optimization example of two Taichi kernels. Note that in

Taichi, the “struct-for” construct allows users to iterate over sparse tensors, which

needs generating a list of elements before the real computation happens. The list

generation itself has performance overhead, which can often be optimized.

As shown in Figure 4-8, since x is a sparse data structure, Taichi needs to gen-

erate an active list of x to know which elements of x need to be looped over. So

there are 3 tasks per such a small kernel in synchronous mode. If the kernel on

the right succeeds the kernel on the left of Figure 4-8, and Taichi performs asyn-

chronous computing, we can perform some analysis to know that the mask state

of x is not changed, fuse the two kernels into one, and finally get Figure 4-9 after

optimizations. In this case, we reduce the number of generated tasks from 6 to 3.

Kernel fusion is not new, but fusing kernels that operate on sparse data structures

is a unique challenge in Taichi, since the iteration over active elements implicitly

depends on the mask of the sparse data structures.

Even if the bodies of both kernels cannot be directly optimized as in this exam-

ple, we can still remove some list generation tasks and reduce running time. This

can be a significant improvement for small kernels where the list generation time

is comparable to the real computation time.

Common GPGPU patterns and Taichi’s sparse computation model motivates

us to apply the following general-purpose and domain-specific compiler optimiza-

tions:

• List generation removal

• Activation demotion

• Task fusion
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Figure 4-8: The generated tasks of two kernels without kernel fusion. x is a sparse
data structure.

Figure 4-9: The generated tasks of two kernels with kernel fusion.

• Dead store elimination

The remainder of this section details these optimizations.

6 .2 List generation removal

This is the easiest whole program optimization, yet it leads to significantly higher

performance for sparse computations in certain cases. A list generation task takes

as input a mask and outputs a list. Two list generation tasks with the same parent

list and the same mask as the input output the same list, and we can eliminate one

of them.

List generation removal not only saves unnecessary execution time on gener-

ating the sparse element lists, but also opens up opportunities for other optimiza-
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tions. For example, if two struct-for tasks are using the same list after list genera-

tion removal, a task fusion may fuse the tasks.

6 .3 Activation demotion

Recall that Taichi has an activation-on-write mechanism. However, it is often the

case that the sparse element was already activated before the task execution, so

the element activeness was checked to avoid unnecessary activation. This extra

check not only creates diverging instruction flow on CPU/GPUs that harms the

performance, but also creates a modification to the corresponding mask state, cre-

ating obstacles for list generation removal. Therefore, we should try to demote

activating accesses to non-activating accesses.

Fortunately, many activations can be demoted, by analyzing the task contexts.

If two struct-for tasks are identical, the loop lists are the same, and the activation

statement in the second task depends only on the loop indices, then the activation

in the second task can be removed.

This optimization is remarkably effective for repeated access patterns such as

[i // 2]. For example, in the restriction (downsample) operator of multigrid

solvers, it is common to have the following pattern (Fig. 4-10):

for i, j in x:
y[i // 2, j // 2] += x[i, j] * 0.25

Figure 4-10: The activation pattern of for i, j in x: y[i // 2, j // 2] += x[i
, j] * 0.25. x is the grid on the left, and y is the grid on the right.
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Our activation elimination optimizer can successfully infer that if the mask of 𝑥

has not been changed, then the mask of 𝑦 will not change either. This avoids false-

positive mask state modifications, and can further bring down the list generation

kernel tasks by 6.7× in the MGPCG example.

6 .4 Task fusion

Clearly, we need to know the data dependency before we fuse. If all tasks are serial:

Tasks A and B can be fused if and only if there is no path of length ≥ 2 between A

and B. For parallel tasks, fuse only when the loop ranges are the same. If there is

an edge A → B in the SFG, we need every accesses on that SNode are at the same

address, and that address is unique per iteration of the loop.

To find all fusible pairs of tasks, we compute the transitive closure of the SFG

using bitsets. For pairs of tasks without edges, we group tasks by the tasks’ type,

loop range (if the type is range-for), or the SNode (if the type is struct-for). For

each group, we use the transitive closure to find which pairs of tasks do not have

any path to each other quickly. For each edge A → B in the SFG, we check if there

is a task C such that A has a path to C and C has a path to B using the transitive

closure, and apply the above check to find if A and B are fusible.

This is very effective because we have many intra-kernel optimizations, but it

might be time-consuming when there are too many tasks.

6 .5 Dead store elimination

We can also perform some inter-kernel data-flow analysis with asynchronous com-

puting. For example, ti.clear_all_gradients() may excessively zero-fill unre-

lated gradient fields, which can be eliminated with data-flow analysis.

For convenience, a user may frequently zero-fill fields in Taichi to ensure data

are correctly re-initialized. This is a typical source of dead stores. For such cases

where a field is completely overwritten, our optimizer can eliminate the previous

dead store:
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@ti.kernel
def clear():

for i in x:
x[i] = 0
y[i] = 0

@ti.kernel
def inc_x():

for i in x:
x[i] += 1

for i in x:
print(x[i])

clear()
# After DSE, y[i] = 0 in this kernel is elimianted

inc_x()
clear()

7 Implementation details

The inter-kernel optimizations are relatively simple to implement, but extra atten-

tion was paid to the infrastructure to support these optimizations. In this section,

we briefly cover implementation details that we empirically found to directly im-

pact performance.

7 .1 Asynchronous Execution Engine

We implement an asynchronous execution engine that performs SFG optimiza-

tions and parallel compilation.

All tasks invoked from the Python side are initially accumulated inside a queue,

until either an implicit synchronization event (e.g., data transfer between the de-
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vice and the host), or an explicit call to flush (explained in the next paragraph)

happens. Upon such events, the tasks are popped off from the queue to construct

an SFG instance. This SFG instance goes through the various kinds of optimiza-

tions mentioned in Section 6 . Once the tasks in the graph are finalized, they are

sent to the JIT compilation workers running in parallel, then the backend device.

Flushing While the more tasks are deferred, the more information is retained for

the SFG to optimize, it is usually undesirable to solely depend on the implicit syn-

chronization events to flush the task queue, since this can easily cause starvation

on either CPU or GPU side. To provide experienced users with more control over

the asynchronous execution engine, we provide a simple API, ti.async_flush()

, to flush the tasks to the SFG optimizer and then the GPU device. This API is

non-blocking, which allows for overlapped execution between CPU and GPU. For

most of the usage cases, our system is configured to periodically flush the tasks

automatically. While this simple strategy could lead to sub-optimal executions, in

practice, we have found this to yield sufficient performance. Note that setting the

flushing period to 1 effectively turns off the asynchronous execution.

Partial SFG Garbage Collection To further mitigate the loss of information po-

tentially caused by flushing or synchronization, each time an optimized SFG in-

stance is sent for execution, Taichi does a partial garbage collection by preserving

those nodes that are the latest owners of the states. As new tasks get launched,

these nodes will become the roots in the new SFG instance. This enables the system

to capture the information it needs for certain types of optimizations. For example,

assuming one preserved SFG node is the latest owner of an SNode’s mask state,

and a new sparse struct-for loop task reading that SNode is launched. If the mask

state has not been modified in between, the SFG optimizer can infer that it is safe

to remove the list generation tasks preceding the struct-for task.
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7 .2 IR handle and IR bank for caching compilation

Since a kernel can be launched many times with the same IR, we store all IRs into

an IR bank to avoid repeated passes on the IR and to improve the asynchronous

compilation performance. We use IR handles to access IRs in the bank. An IR han-

dle consists of a pointer to the IR and the hash of the IR. We assign an IR handle to

each task, and whenever we are going to do any modification to the IR, we check if

we have already done it in the IR bank, where we cache the result of IR optimiza-

tion passes such as fusion, activation elimination, and dead store elimination. If

the result is not cached, we copy the IR on write to avoid corrupting the IR in the

bank, do the modification, store the modified IR into the bank, and then cache the

mapping from the IR handle before modification to the IR handle after modifica-

tion into the bank. We also cache some data that do not need to modify the IR into

the bank, such as the task’s metadata.

7 .3 Intra-kernel data-flow optimizations

To achieve better performance after kernel fusion, we need an optimization pass

on the task after fusion. As Taichi IRs are inherently hierarchical, we build a data-

flow graph for data-flow analysis, to perform inter-kernel optimizations, including

store-to-load forwarding, dead store elimination, and identical store/load elimina-

tion. For example, in Figure 4-9, on CPU we demote atomic addition operations

into loads, adds and stores, and with store-to-load forwarding, we can replace the

load of the second atomic addition (x[i] += 2) with the addition result of the first

atomic addition (x[i] += 1), and get the final result as if the input was x[i] += 3 with

other optimizations.

More details on intra-kernel data-flow optimizations can be found in the Ap-

pendix.
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8 Evaluation

In this section, we systematically evaluate our system on microbenchmarks and

large-scale end-to-end test cases.

Metrics On each test case, we evaluate the performance with five metrics:

1. Wall-clock time (inter-kernel optimizer time included);

2. Backend (GPU or CPU thread pools) execution time;

3. Number of tasks launched;

4. Number of instructions emitted to the code generator;

5. Number of tasks compiled.

Each case is executed multiple times on GPU (CUDA) and CPU (x64), with a

synchronization after each run in asynchronous mode, and the total metrics over

all runs are recorded.

Benchmark cases We constructed 10 simple yet indicative microbenchmarks (tens

of lines of code each) to unit-test specific inter-kernel optimizations. Four com-

plex test cases (hundreds of lines of code each) test the behavior of our optimizer

on real-world programs, including computational physics tasks on regular sparse

grids (section 8 .2), hybrid Lagrangian-Eulerian schemes (particles and grids, sec-

tion 8 .3), multi-resolution sparse grids (section 8 .4), and triangular meshes (sec-

tion 8 .5).

8 .1 Microbenchmarks

We constructed 10 microbenchmark cases to unit-test the system. The results are

promising: without code modification, the new system leads to 3.73× fewer kernel

launches on GPUs and 2.5× speed up on our benchmarks, as shown in Fig. 4-16.

More details on the microbenchmarks are discussed in the appendix.

151



Table
4.1:

Benchm
arks

againstthe
originalTaichisystem

[49]w
ithoutinter-kerneloptim

izations.The
baseline

system
and

applications
are

tuned
against

state-of-the-art
m

anually
engineered

C
PU

and
G

PU
im

plem
entations,as

detailed
in

[49].
Benchm

arks
are

done
on

a
system

w
ith

a
quad-core

Intel
C

ore
i7-6700K

C
PU

w
ith

32
G

B
of

m
em

ory,and
a

G
TX

1080
Ti

G
PU

w
ith

12
G

B
of

G
R

A
M

.The
geom

etric
m

ean
allbenchm

arks:
the

w
all-clock

speed
up

is
1.87×

(C
U

D
A

)
/

1.33×
(x64)

and
the

reduction
of

task
launched

is
4.02×

.
C

om
m

ands
to

reproduce
all

the
num

bers
are

included
in

sections
detailing

each
experim

ent.

C
ases

B
ackend

W
all-clock

tim
e

(s)
B

ackend
tim

e
(s)

Tasks
launched

Instructions
em

itted
Tasks

com
piled

R
ef.

O
urs

R
ef.

O
urs

R
ef.

O
urs

R
ef.

O
urs

R
ef.

O
urs

M
acC

orm
ack

C
U

D
A

8.497
2.907

8.479
2.874

4726
319

16880
6277

96
15

x64
206.115

73.520
206.065

73.468
4726

319
16880

6277
96

15

M
G

PC
G

2D
C

U
D

A
9.185

3.690
7.799

2.101
1057560

224568
3387

3816
204

105
x64

23.640
20.468

20.970
19.841

1057560
224570

2961
3331

204
106

3D
C

U
D

A
9.352

6.500
8.960

6.244
304392

63869
3652

4450
146

82
x64

172.599
161.927

171.135
161.607

304392
63869

2728
3200

145
77

M
LS-M

PM
C

U
D

A
14.059

10.633
13.987

10.584
18806

9201
8900

20008
122

91
x64

292.615
280.415

292.307
280.376

18806
9201

9132
20492

122
91

A
utoD

iff
C

U
D

A
2.256

1.377
2.124

1.181
65674

42454
1346

2184
22

32
x64

60.947
53.278

59.308
53.159

65674
42454

1353
2174

22
30 152



Table 4.2: Geometric mean results of the 10 microbenchmark cases. Numbers are
ratios between the reference system [49] and ours with inter-kernel optimizations.

Metric CUDA x64

Wall-clock time 2.30× 2.14×

Backend time 2.56× 2.32×

Tasks launched 3.73× 3.69×

Instructions emitted 0.97× 0.97×

Tasks compiled 1.15× 1.15×

8 .2 MacCormack advection

In this benchmark case, we use the MacCormack advection scheme [109] with RK3

path integration. We follow the recent trends to use collocated grids (see, e.g., [92,

34]) to improve cache line utilization. Our benchmark was carried out on a 3D unit

grid of 2563 cells. We advect three scalar physical fields over a sparsely populated

vector field defined over a tube domain with inner radius 0.32 and outer radius

0.45. The statistics of the first five frames are discarded to exclude the effects of

the JIT compilation. Our optimizer is able to achieve approximately 2.92× and

2.80× performance boost on CUDA and CPU, respectively. This is very close to

the theoretical 3× acceleration. Note that the program is memory-bound, when

the three physical fields are adjacent in memory and are advected together, which

improves cache line utilization by 3×. The number of launched tasks is reduced

by 14.8× on both backends. Compared to manually fused advection on different

channels, our system automatically detects fusible patterns. This provides more

coding flexibility and reduces the mental burden on developers.

We present an ablation study of four inter-kernel optimization passes in Table

4.3. The improved performance and the reduced number of launched tasks in

this benchmark mainly attribute to the task fusion and the list generation removal

optimization.
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Table 4.3: An ablation study on the MacCormack advection benchmark. The main
optimization comes from task fusion. In this case, disabling list generation opti-
mization transitively disables fusion, therefore degrades the performance.

Ablation Tasks Wall-clock/GPU time (s)

Reference [49] 4726 8.498/8.479

No list generation removal 3781 8.542/8.488

No activation demotion 319 2.899/2.867

No task fusion 950 7.990/7.959

No dead store elimination 319 2.906/2.869

All optimizations on 319 2.907/2.874

8 .3 Moving Least Squares Material Point Method (MLS-MPM)

To evaluate our system in more challenging cases where both particles and grids

are used, we benchmarked against [124]. As shown in Fig. 4-11, we seed a uniform

cube of 16, 777, 216 (2563, on GPU) or 2, 097, 152 (1283, on x64 CPUs) fixed corotated

particles into a grid of size 1 × 1 × 1, with the distance between each two adjacent

particles 1/512. Each particle is a cube of length 1/512, with 𝜌 = 103, 𝐸 = 2 ×

104, 𝜈 = 0.4. The gravity is 𝑔 = 9.8. Each frame consists of 400 substeps, with time

step size ∆𝑡 = 10−4s. We benchmark the time of the second frame (i.e., the 401st

to the 800th substeps). The ground is set to be at 𝑧 = 1/32, and to make the cube

touch the ground in the second frame, we set the initial 𝑧-coordinate of the center

of the bottom-most particles to be 49/1024. The 𝑥 and 𝑦 coordinates of the center

of the cube are set to be the center of the grid.

Figure 4-11: The falling cube in our MLS-MPM benchmark. The cube’s initial po-
sition is higher than the one we used in the benchmark for better visualization.

To achieve the best performance, we use two grids and swap them before each
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substep. We also hint to our optimizer that the values stored in the pid (particle

ID) field is a permutation of all active indices in the particle SNode. Then our

optimizer fuses G2P and P2G into a single G2P2G task, which is the main source

of optimization. The dead store elimination further analyzes that the values stored

to the C field (affine velocity around the particle, see [60]) in the G2P2G task are

never used, leading to further improved performance. Our system achieves a

1.32× performance boost on CUDA over the original Taichi system. The perfor-

mance speedup due to fusion matches the originally reported number in [124]4.

An ablation study of four inter-kernel optimizations is listed in Table 4.4. In the

microbenchmarks, there is a small-scale MPM test case (mpm_splitted) that simply

fuses per-particle operations and grid boundary conditions, leading to 1.1× speed

up.

Table 4.4: An ablation study on the MLS-MPM benchmark. The main optimization
comes from task fusion and dead store elimination. Note that without list gener-
ation removal, we cannot perform task fusion, and other optimizations will take
much more time.

Ablation Tasks Wall-clock/GPU time (s)

Reference [49] 18806 14.059/13.987

No list generation removal 14006 15.059/13.908

No activation demotion 9201 10.976/10.927

No task fusion 11608 13.835/13.786

No dead store elimination 9201 12.589/12.541

All optimizations on 9201 10.633/10.584

8 .4 Multigrid preconditioned conjugate gradients (MGPCG)

Multigrid algorithms have frequent sparse data structure operations on grids of

multiple resolutions. We test our system on a complex MGPCG Poisson solver. We
4Note that even in our implementation with G2P2G, Wang et al. [124] (wall-clock time 5.004 s on

CUDA) is still 2.12× faster than our system, because of their AOSOA acceleration data structure,
which is outside the scope of this work. In their hand-engineered CUDA version, AOSOA+G2P2G
is 2.1× faster than G2P2G, which aligns well with the observations on our system.
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use a sparsely populated region in a 1024 × 1024 (2D) and 256 × 256 × 256 (3D)

grid. We follow the MGPCG solver design in [49]. In the 2D case, for example, our

optimizer is able to bring down the number of tasks launched from 1, 057, 560 to

224, 568 (only 21% of the original number). This is because the restriction, smooth-

ing, and prolongation operations lead to 420, 912 redundant list generation tasks,

which are reduced to 8004 (2% of the original) by our list generation removal and

activation demotion (Fig. 4-12). Note that the CUDA speed ups (2.49× in 2D and

1.44× in 3D) are much higher than the x64 speed up (1.12× in 2D and 1.07× in 3D),

likely because parallel task launches on GPUs are relatively more expensive than

that on CPUs, and the majority of the speed ups in this benchmark case is from

eliminating small kernels such as list generation and clearing.

Figure 4-12: The key computational patterns in one iteration of the multigrid pre-
conditioner. Note that in a single Poisson solve, once the sparse multigrid hierar-
chy is initialized, it will never change its topology. Our optimizer is able to infer
the this property, since activation demotion will learn that the restriction kernels,
starting from the second iteration, does not additionally activate any new voxels.
The majority of list generations can also be removed.

To evaluate our system on problems of different scales, we scan the problem

size and plot the wall-clock time and backend time in Figure 4-13. Most of the
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optimizations come from eliminating fragmented kernels caused by list genera-

tion. As the problems scale up, these kernels occupy relatively less time, hence

we observe the performance boost to be more significant at lower resolutions. An

ablation study of four inter-kernel optimization passes is listed in Table 4.5.

Table 4.5: An ablation study on the 2D 1024× 1024 MGPCG benchmark. The main
optimization is list generation removal. Note that activation demotion helps fur-
ther eliminate 20% of the list generation tasks

Ablation List / Total tasks GPU time (s)

Reference [49] 420912/1057560 7.776

No list generation removal 420912/827303 7.232

No activation demotion 10524/227104 2.213

No task fusion 8004/231695 2.156

No dead store elimination 8004/224585 2.098

All optimizations on 8004/224565 2.098

8 .5 AutoDiff: nodal forces from energy gradients

We implemented MLS-MPM [48] with Lagrangian forces [60]. In the simulation,

the structure is modeled using a mesh of 160K triangles, and a NeoHookean hy-

perelastic model (Fig. 4-14). The force f𝑖 on the particle 𝑖 is by definition

f𝑖 = −𝜕𝐿(x)

𝜕x𝑖

.

Since manually deriving the partial derivative on the right hand side is error-

prone, we rely on Taichi’s automatic differentiation system [47]. The key optimiza-

tion opportunity is the following code:

with ti.Tape(total_energy):
compute_total_energy()

The code above does the forward computation of total energy 𝐿(x), and then

automatically evaluates for x.grad, which is essentially 𝜕𝐿(x)
𝜕x𝑖

. In the majority of the
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Table 4.6: An ablation study on the AutoDiff benchmark. The main optimization
comes from dead store elimination. Fusion helps, to some extent, when evaluating
and clearing the gradients. Since the data structures are all dense in this bench-
mark, list generation and activation demotion lead to no performance boost.

Ablation Tasks Wall-clock/GPU time (s)

Reference [49] 65674 2.256/2.214

No list generation removal 42454 1.386/1.191

No activation demotion 42454 1.383/1.188

No task fusion 54064 1.411/1.214

No dead store elimination 48424 2.305/2.082

All optimizations on 42454 1.377/1.181

cases, the result of the total energy 𝐿 is not used, so by looking at a long window of

kernels, our optimizer can automatically eliminate the forward computation, only

doing the backward gradient evaluation. Inter-kernel dead store elimination plays

the most important role in this benchmark case.

An interesting observation is that our system gets a significantly higher speedup

on CUDA than x64. This is because the particle-to-grid (P2G) transfer step plays

different roles in the total time consumption. Note that P2G requires atomic add,

which is a relatively cheap operation on CUDA (native hardware support) yet ex-

pensive operation on x64 (needs software compare and swap). As a result, when

our inter-kernel optimization is on, P2G takes 51% run time on x64, yet only 7%

on CUDA. This means the forward total energy computation, which is optimized

out, occupies a smaller fraction on x64 (since P2G remains the bottleneck), hence a

smaller speedup.

8 .6 Discussions

Productivity An attractive feature of our system is users get a performance boost

for free, simply by turning on an option to let the system conduct inter-kernel opti-

mizations.
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Parallel compilation Delay caused by compilation time may lead to potential

performance issues in JIT systems. Fortunately, in our asynchronous execution en-

gine, we have a whole buffer of kernels to compile, and parallel compilation signif-

icantly reduces this compilation delay. For example, in the 2D 1024×1024 MGPCG

benchmark, we find the time of the first iteration, which is compilation delay as no

kernels are compiled and cached, improves from 9.0𝑠 to 3.7𝑠 after switching to the

asynchronous engine, a 2.43× improvement. See Fig. 4-15 for a visualization of the

multithreading behavior of the asynchronous optimization and execution engine.

Behavior on CPUs The motivation of our system is to accelerate GPU computa-

tion, but since Taichi also has CPU backends, we tested our system on CPU too.

Interestingly, on CPU, the performance boost is less significant compared to GPUs.

Initial investigations show three reasons:

1. When using the CPU backend, the optimizer and executor share the same

processor, meaning the optimization process itself may slow down the ex-

ecution. This issue does not exist on the GPU backend, since optimization

overlaps with the GPU kernel execution time.

2. On CPU computation itself occupies a bigger fraction of the execution time.

For example, in the AutoDiff example, we find 51% of the execution time

was spent on scattering force contributions to nodes, which needs expensive

software-emulated atomic add. On GPUs, atomic add is hardware-native

and is much faster. When the task is fully memory-bound, e.g., the MacCor-

mack advection benchmark, we do achieve a close to ideal 3× speed up on

CPUs, similar to the behavior on GPUs.

3. Some of our performance boost comes from eliminating kernels. Compared

to the actual computation, kernel launching is expensive on GPU but rela-

tively cheap on CPU.

Still, we believe our system to be a plus for programmers running parallel pro-

grams on CPUs.
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Wall-clock time v.s. backend time In most cases, our wall-clock time is within

103% of the execution time, which indicates that our multi-threaded optimization

and compilation system is able to keep GPU busy. However, in the 2D MGPCG

example, we find wall-clock time to be 1.75× higher than the execution time. This

is an engineering limitation of our work: some optimization passes, such as kernel

fusion, still takes a longer time than expected on relatively small-scale problems

with many tasks. We believe a more carefully engineered optimization system can

get rid of this issue.

9 Conclusion

We have presented an inter-kernel optimization system or parallel imperative pro-

gramming, with domain-specific optimizations for spatially sparse programming

and differentiable programming. In our test cases, we get 1.87× wall-clock time

performance improvement on GPUs, without users changing any computation

code. We believe our system can alleviate the low-level performance burden on

GPU programmers, and serve as an infrastructure for future work on developing

high-performance systems for GPU programming in computer graphics.

Future work While our inter-kernel optimizer delivers satisfactory results on

spatially sparse and differentiable computation, it does not automatically utilize

kernel-level information on other computation patterns, such as sparse linear alge-

bra [68] and graph computations [133]. Exploring the SFG model on other domain-

specific computation is meaningful future work. Creating a “general SFG” that

serves various DSLs is an exciting future direction. In spatially sparse computation

itself, there are many unexplored compile-time metadata we can extract. For exam-

ple, a colored Gauss-Seidel solver may only use the “white” cells in a checkerboard

pattern. These features may enable further inter-kernel optimization opportunities

in physical simulation and numerical linear algebra.
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Appendix for chapter 4

Microbenchmark cases

Here we describe the cases in the microbenchmarks.

The case chain_copy contains 2 kernels y[i] = x[i] + 1 and z[i] = y[i] + 4,

like Figure 4-8. They are fused in asynchronous mode.

increments contains 10 inc() kernels in Figure 4-8.

fill_array contains 10 kernels, all filling a 1-D dense array with the same constant

value. With task fusion, only 1 task is launched in these cases instead of 10 tasks.

The running time is nearly 10x faster.

sparse_saxpy contains some kernels performing saxpy (Scalar Alpha X Plus

Y) operations among sparse tensors. The performance boost of execution time

comes from the elimination of list generation and task fusion. Sometimes the wall-

clock time is slower than the synchronous mode because of the overhead of the

asynchronous engine.

autodiff computes a loss function as reduction on an array and accumulates

the gradients to another array 10 times. With dead store elimination, the forward

tasks computing the loss function should be eliminated except for the last one, so

the number of launched tasks reduces by roughly a half.

stencil_reduction performs stencil and reduce operations on a tensor. They are

common operations in computer graphics.

mpm_splitted contains some substep() kernels in an MPM program [48].

simple_advection performs semi-Lagrangian advection 10 times. The perfor-

mance boost comes from activation elimination and task fusion.

multires is a multi-resolution program downsampling in 4 levels.

deep_hierarchy contains 5 jitter() kernels x[i] += x[i + 1] when i % 2 == 0.

The tasks are not fusible, but we can still get some performance boost by eliminat-

ing list generation tasks.
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Intra-kernel data-flow optimizations

We apply the traditional control-flow analysis to optimize within kernels. We build

a control-flow graph along with the hierarchical IR, and perform analysis on the

graph. With the help of control-flow analysis, we perform optimizations including

store-to-load forwarding, dead store elimination, and identical load/store elimina-

tion. These optimizations motivate task fusion as it greatly simplifies fused tasks.

We also utilize control-flow analysis to help compute task meta information.

Since stores to a SNode may only partially modify a value state, the resulting value

state (which contains the modified and unmodified part) may need a read from the

previous version of the value state. We use control-flow analysis to detect which

SNodes do not need a read from the previous version of the value state.

Figure 4-17 shows the effect of data-flow optimization on 360 Taichi test cases.

Although these test cases are relatively simple, data-flow optimization still leads

to 16% fewer instructions.

Key source code files

We partially reuse the existing Taichi system, with key modifications listed below:

• The SFG data structure and some optimization passes are implemented in

tahici/program/state_flow_graph.[h/cpp];

• The asynchronous execution engine is implemented in tahici/program/async_engine

.[h/cpp];

• The IR bank and some of the optimization passes are implemented in tahici

/program/ir_bank.[h/cpp].
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Figure 4-13: MGPCG benchmarks on CUDA. The annotation numbers on each
data point indicate the acceleration on wall-clock time and backend time. Most of the
performance boost in this example comes from list generation removal. Since list
generation takes a smaller portion of total computation when resolution increases,
the gap between ours and reference performance shrinks as resolution goes up.
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Figure 4-14: The AutoDiff test case: a hyper-elastic material falls down, hits an
obstacle, and finally land on the ground. The nodal forces are computed using
automatic differentiation. We used a low-resolution simulation here to better visu-
alize the mesh structure.

Figure 4-15: Top: In our asynchronous execution engine, multiple compilation
threads simultaneously compile optimized IR to executable kernels, maximizing
JIT benefits. Timelines are gathered from the MGPCG example, where our parallel
compilation system leads to a 2.43× shorted program start-up time. Bottom: At
later stages of program execution, most possible inter-kernel optimized kernels are
already compiled and cached, so the compilation threads are mostly idle. Still, our
multithreading framework allows the inter-kernel optimizer to overlap with the
launcher thread and GPUs, making sure no GPU starvation happens. Timelines
are gathered from the MLS-MPM example.
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Figure 4-16: Microbenchmarks results. “Sync” refers to the reference system [49].
“Async” refers to our system with asynchronous execution and inter-kernel opti-
mizations.
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Figure 4-17: Ratio of emitted instructions with/without data-flow optimization
among unit tests. On most cases fewer instructions are emitted. The cases with
more instructions do happen, because data-flow optimization indirectly triggers
some other optimization passes that lead to high-performance but also more (and
cheaper) instructions.
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Chapter 5

Quantized Computation in Taichi

High-resolution simulations can deliver great visual quality, but they are often lim-

ited by available memory, especially on GPUs. We present a compiler for physi-

cal simulation that can achieve both high performance and significantly reduced

memory costs, by enabling flexible and aggressive quantization. Low-precision

(“quantized”) numerical data types are used and packed to represent simulation

states, leading to reduced memory space and bandwidth consumption. Quan-

tized simulation allows higher resolution simulation with less memory, which is

especially attractive on GPUs. Implementing a quantized simulator that has high

performance and packs the data tightly for aggressive storage reduction would be

extremely labor-intensive and error-prone using a traditional programming lan-

guage. To make the creation of quantized simulation practical, we have developed

a new set of language abstractions and a compilation system. A suite of tailored

domain-specific optimizations ensure quantized simulators often run as fast as the

full-precision simulators, despite the overhead of encoding-decoding the packed

quantized data types. Our programming language and compiler, based on Taichi,

allow developers to effortlessly switch between different full-precision and quan-

tized simulators, to explore the full design space of quantization schemes, and

ultimately to achieve a good balance between space and precision. The creation

of quantized simulation with our system has large benefits in terms of memory

consumption and performance, on a variety of hardware, from mobile devices to
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Figure 5-1: Left: Our system decouples quantization schemes from computation,
allowing programmers to improve simulation resolutions using lower-precision
(“quantized”) numerical data types that consume less memory. Programmers can
easily switch between different quantization plans to rapidly explore the design
space of quantized simulators, to achieve a good balance between numerical pre-
cision and memory consumption. Our compiler is in charge of optimization and
code generation. Right: High-resolution simulation demos built by our system.
All demos here run on a single GPU with ≤ 32 GB memory, and each frame takes
around one minute.

workstations with high-end GPUs. We can simulate with levels of resolution that

were previously only achievable on systems with much more memory, such as

multiple GPUs. For example, on a single GPU, we can simulate a Game of Life

with 20 billion cells, a Eulerian fluid system with 421 million active voxels, and

a hybrid Eulerian-Lagrangian elastic object simulation with 235 million particles.

At the same time, quantized simulations create physically plausible results. We

conducted a user study, showing that humans are not able to distinguish between

full-precision and quantized versions of 3D fluid simulations. Our quantization

techniques are complementary to existing acceleration approaches of physical sim-

ulation: they can be used in combination with these existing approaches, such as

sparse data structures, for even higher scalability and performance.
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1 Introduction

Computer graphics applications, such as physical simulation, require high resolu-

tion for visual quality. Unfortunately, as simulations scale up, they often run out

of available memory to store the physical states, especially when running on GPUs

with hard memory space limits. Existing techniques that scale up simulations are

mostly focused on improving computation performance. The space for improving

memory efficiency is largely underexploited.

Fortunately, many simulations do not need standard full-precision IEEE 754

data types, such as float and double in the C programming language. While these

general-purpose floating-point formats are usually the only formats supported by

processors for computation, we observe that, for storage, we can use more op-

tions, including low-bit integers, truncated fixed-point real numbers, and tuples of

floating-point real numbers with shared exponents. This directly motivates us to

leverage low-precision data types in simulation to save memory space and band-

width.

While “using fewer bits in data types to save space” sounds like a straight-

forward idea, doing this robustly and efficiently is a significant challenge. Man-

ually coding programs that operate on low-precision and quantized data types

is extremely laborious and error-prone. For example, writing code to decode a

low-precision float point number into IEEE 754 float32 involves numerous low-

level bit operations and can easily make simulator code unreadable. Quantized

data type libraries may simplify development, but they often result in unsatisfac-

tory performance, since general-purpose compilers may not easily optimize re-

lated memory operations that read or write only part of a hardware-native integer

type such as 32- or 64-bit integers. See Fig. 5-2 for a high-level comparison between

different approaches to implementing quantized simulators.

Moreover, determining the right quantization scheme often requires repeated

trial-and-error. The most effective way to validate a quantization scheme is to im-

plement the simulator and actually run it. Therefore, flexibly switching between dif-
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Figure 5-2: Features of different approaches. Our compiler approach aims for both
productivity and performance.

ferent quantization schemes is vitally important for practically developing quantized

simulators.

We introduce a language and compiler for quantized simulation, where low-

precision (“quantized") numerical data types are used to represent simulation states,

leading to reduced memory space and bandwidth consumption. In our system,

developers write simulators as if they are using a traditional parallel imperative

programming language, such as C++ and CUDA. When doing memory-space op-

timization, they do not modify any of the computation code. Instead, they use

a simple language to specify numerical value quantization schemes and flexibly

explore quantized versions of the simulator. Rapid experiments lead to properly

compressed simulation states, improved memory space and bandwidth efficiency.

Note that in memory-bound programs the overhead of encoding and decoding

quantized data types would be negligible, and quantization may improve perfor-

mance due to reduced memory bandwidth consumption.

Our tailored programming interface and compiler can greatly simplify the de-

velopment of quantized simulators. Our system provides language-level abstrac-

tion and first-class compiler support for quantized computations and domain-

specific optimizations. Programmers can easily specify customized and quan-

tized data types for physical state storage. Since our system decouples quantization

schemes from computation kernels, developers can easily experiment with dif-

ferent low-bit data formats, easily achieve a good balance between precision and
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space via rapid experiments.

We summarize our contributions as follows:

1. A simple programming interface for quantized simulation that provides pro-

grammer bit-level control over numerical data types. The numerical data

type interface is orthogonal to the actual computation, this allows the pro-

grammers to rapidly experiment with different quantization schemes.

2. A compilation system that automatically generates efficient code for encod-

ing/decoding quantized data types. Our system supports x64, ARM64, CUDA,

and Apple Metal backends.

3. A suite of domain-specific compiler optimizations further improves the mem-

ory performance of compiled quantized computation. These optimizations

bring 4.10× performance improvement on our microbenchmarks and up to

1.58× on the large-scale GPU simulators.

4. Systematic evaluations of our system. We demonstrate that our system pushes

the resolution of physical simulations to unprecedented resolutions. Under

proper quantization, we achieve 8× higher memory efficiency on each Game

of Life cell, 1.57× on each Eulerian fluid simulation voxel, and 1.7× on each

material point method [112] particle. To the best of our knowledge, this is

the first time these high-resolution simulations can run on a single GPU. Our

system achieves resolution, performance, accuracy, and visual quality simul-

taneously. A user study shows, for 3D simulations, our quantized simulators

create almost visually indistinguishable results from full-precision simula-

tors.

Our system is implemented as an extension to the Taichi programming lan-

guage [49].

171



2 Related Work

2 .1 Bit-level compression

Compressed color formats in graphics and image processing Compressed data

types have proven success in graphics. For example, the 16-bit color format “R5G6B5",

where 5, 6, and 5 bits are used to store the red, green, and blue channels of a

pixel, was widely adopted for legacy LCDs and graphics APIs (e.g., GL_RGB565

in OpenGL). The 32-bit RGBE format (used in the RADIANCE rendering sys-

tem [126]) used 8 bits for red, green and blue channels each, and a shared 8-bit ex-

ponent, providing larger dynamic ranges. In modern production rendering, RGBE

formats are used for saving communication bandwidth. For example, Eisenacher

et al. [31] used an RGB9e5 format for path tracing weights.

Quantized neural networks In deep learning, quantized neural networks (e.g.,

[25, 52, 56]) and specialized hardware (e.g., [62]) for them have been studied exten-

sively, to use quantized data formats to improve computation throughput. Instead

of using single-precision float32 data type, recent work explores using low-bit

data types such as fixed-point numbers, int8 and even 1-bit integers for deep neu-

ral network training and inference. See [39] for a good survey.

Manipulating bits in programming laugnages In programming languages such

as C/C++, bit-level compression is often implemented using efficient bitwise op-

erators, such as and “&”, or “|”, and xor “^”. Meanwhile, C++ “bit fields", whose

behavior is not yet standardized, can sometimes be used for basic bit-level com-

pression of integral types:

struct S {
// 3 bits: value of x
// 6 bits: value of y
// 2 bits: value of z
unsigned char x : 3, y : 6, z :2;

};
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Although an extensive study has been conducted in quantized computation,

a domain-specific system for productively developing high-performance simula-

tors is missing. As a result, a developer who wants quantized computation has to

write low-level code that is hard to maintain or resort to handcrafted libraries with

performance issues.

2 .2 Floating-point formats

IEEE Standard for Floating-Point Arithmetic (IEEE 754)[53] serves as the guide-

line of floating-point format and computation. Notably, the IEEE 754 single- and

double- precision floating-point formats (i.e., float and double in C), have been

the prevalent floating-point formats used in computer graphics and scientific com-

puting. They occupy 32 and 64 bits in memory, respectively. Floating-point bits

include a sign bit, a few exponent bits, and significand bits. Since computing

applications have different preferences between precision, compute throughput,

memory bandwidth and space, many variants of float-point numbers do exist. For

example, when higher precision is needed, C provides the non-standard long

double format that usually comes with 80 bits, and the IEEE 754-2008 revision also

defines “quadruple" with 128 bits, and “octuple" with 256 bits, both of which are

rarely used. In fact, formats with lower precision are more frequently used, a typi-

cal example being the 16-bit half-precision format (5 bits for exponent and 10 bits

for fraction). Recently the Brain Floating Point (bfloat16, 8 bits for exponent and

7 bits for fraction) format has been introduced in Google TPUs [61] for deep learn-

ing. half and bfloat16 demonstrate interesting trade-offs between dynamic range

(number of exponent bits) and accuracy (number of fraction bits, a.k.a. mantissa).

See Fig. 5-3 for an depiction of these floating-point formats.

We provide a flexible programming interface for specifying custom floating-

and fixed- point data types. Programmers can easily switch between different data

types to achieve a good balance between space and precision.
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Figure 5-3: Various floating-point data types.

2 .3 High-resolution simulations

Work in graphics explores high-resolution simulation on multicore CPUs [86, 110,

80, 1, 79] and massively parallel GPUs [130, 35, 131, 124]. Corresponding sparse

data structures are proposed to support the underlying structured grid, often with

certain degree of bit-compression [44, 89, 41, 110]. Most of these attempts are based

on manual low-level performance engineering using C++ and CUDA. In our work,

we use a programming language approach for scaling up simulations, based on

Taichi [49]. We focus on consumer-level computers with a single GPU for sim-

plicity, yet our techniques can be applied to multi-GPU and multi-node settings as

well.

Our system practically pushes the limit of simulation resolutions by alleviating

the memory space constraints. For example, with the help of quantization, our

single GPU MLS-MPM [48] simulation of 235 million particles, has a higher reso-

lution than the existing highest resolution MPM simulation on 8 GPUs (134 million

particles, see [124]).
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2 .4 Programming systems for simulation

Engineering high-performance simulation systems can be a time-consuming task

since a lot of low-level performance engineering is needed to fully exploit the

capabilities of modern computer architecture. Domain-specific languages (DSL)

play an important role in improving the productivity of simulation systems. One

thread of work provides a high-level graph-based abstraction for meshes that dis-

cretize the domain. For example, Liszt [30] focuses on solving PDE on meshes.

Several domain-specific languages exist for physical simulation. Simit [69] and

Ebb [13] represent simulation problems using sparse linear algebra and relational

data models. Insightful discussions on DSLs for simulation can be found in [12].

TACO [68, 23] is a sparse linear algebra compiler that can be potentially useful for

solving linear systems in simulations.

More closely related to this work is the Taichi programming language [49].

Taichi is a DSL with first-class support for sparse data structures, a critical compo-

nent of modern high-performance physical simulators. Taichi also supports differ-

entiable programming [47], allowing developers to evaluate gradients of physical

simulators for machine learning and optimization purposes. We will briefly cover

key Taichi features related to this work.

3 Taichi background

We built our system on top of Taichi [49], our data-oriented programming lan-

guage designed for simulation applications. We extend its type system, computa-

tion and data layout intermediate representation (IR), and code generator. Taichi

supports spatial sparsity and differentiable programming [47], and our quantiza-

tion system is orthogonal to these existing features of Taichi.

We partially reuse the LLVM code generation pipeline in Taichi, for x64 and

CUDA on consumer-level desktop computers. Taichi also powers the physics en-

gine on 500 million mobile devices in the Kuaishou app, allowing users around the
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world to generate AR effects augmented with physics. Therefore, we have also im-

plemented our system on the Apple Metal backend and evaluated its performance

on an iPhone (section 7 .4).

The Taichi language has two parts: a computation language and a data layout

language. This decoupling allows users to freely explore data layouts without

modifying computational kernels. This work further allows programmers to freely

switch data types of numerical values. Existing data types supported in Taichi are

ti.f32/f64 (32/64-bit IEEE 754 floating-point number), ti.u8/16/32/64 (unsigned

integers), and ti.i8/16/32/64 (signed integers)1. In our system, users can flexibly

define new data types for more compact storage.

Computation language Although the frontend (computation language) of Taichi

is embedded in Python, Taichi will inspect the input Python abstract syntax tree

and compile them into high-performance executable kernels on parallel devices.

Taichi’s frontend has a Python-style syntax, enhanced with automatic paralleliza-

tion, and leads to executables with comparable performance to C++ or CUDA. Two

simple Taichi kernels are shown below:

@ti.kernel
def saxpy(a: ti.f32):

for i in x:
# Parallel for loop over
# active indices of x
z[i] = a * x[i] + y[i]

@ti.kernel
def conditional_stencil():

for i, j in y: # 2D parallel for loop
if y[i, j] < 0:

y[i, j] = x[i−1, j] − 2*x[i, j] + x[i+1, j]

1In this manuscript we will use the same format to refer to these standard data types, for ex-
ample f32 or float32 for 32-bit IEEE 754 floating-point number, i16 or int16 for 16-bit signed
integer.
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The Taichi computation language is expressive: programmers can easily write

a ray tracer with if branching and while loops in Taichi.

Data layout language More closely related to this work is the data layout lan-

guage and IR. Taichi supports a flexible language to specify data layouts (see [49]

for more details). Here we only introduce the concept of a Taichi field, which

are essentially multidimensional dense or sparse tensors. Each element of a field

can be a scalar (e.g., density), a small vector (e.g., velocity), or a small matrix (e.g.,

stress tensor). No matter how the internal data layout of a Taichi field is defined,

in computational kernels (@ti.kernel), field elements are always accessed via an x

[i, j, k]-style syntax, regardless of its data layout. The following code declares a

field of i32 elements, and then materializes along the i and j axes, each dimension

with 32 and 64 elements.

x = ti.field(dtype=ti.i32)
ti.root.dense(ti.ij, (32, 64)).place(x)
# Equivalent to int x[32][64] in C

4 Quantized numerical data types for simulations

In this section, we introduce quantized data types, which are often customized to

trade precision for memory efficiency. Our system provides both customized inte-

gral data types (lossless) and real data types (usually lossy).

4 .1 Customized integral types

Integral data types are relatively easy to specify since they are simply series of

binary bits. For signed integral types, we pick the classical two’s complement data

format for negative numbers. We provide to the user the following APIs to create

signed (default) and unsigned integral types:

i5 = ti.quant.int(bits=5)
u19 = ti.quant.int(bits=19, signed=False)
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4 .2 Custom real types

We offer both fixed-point and floating-point data types. Fixed-point numbers have

advantages when their range is strictly bounded in the simulation. For example,

when representing x-coordinates of particles, if the boundary condition ensures

their values are within [−2, 2), then fixed-point real types can be safely used. They

also provide higher precision compared to floating-point types of the same number

of bits, since all the bits are used to represent the fraction part. However, the lim-

ited dynamic range of fixed-point types can be problematic when handling other

physical properties, such as velocity. Therefore, we also offer floating-point types,

for values with high dynamic ranges.

Fixed-point real numbers This is the easiest way to represent a real number us-

ing integral data types. In fact, we directly reuse a custom integral type plus a real

scaling factor to represent custom fixed-point numbers. For example, if the range

of the fixed-point number is [−3.14, 3.14) and we have 17 bits, the value can be

simply represented by 𝑟 = 𝑠× 𝑖, where 𝑖 is a 17-bit signed integer and 𝑠 = 3.14/216.

Note that there is one sign bit in the underlying integer hence we use 216 instead

of 217 as the denominator.

Fixed-point real numbers can be specified as follows:

fixed17 = ti.quant.fixed(frac=17, range=3.14)
# Range = [−3.14, 3.14)

ufixed5 = ti.quant.fixed(frac=5, signed=False, range=2)
# Range = [0, 2)

When the value is known to be always non-negative, the programmer can use

signed=False to omit the sign bit and allow the fraction part to have one more bit

for higher precision.

Floating-point real numbers For real numbers with improved dynamic ranges,

we allow exponent bits in real number data types:
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f18 = ti.quant.float(exp=4, frac=14)
uf22 = ti.quant.float(exp=6, frac=16, signed=False)

Same as ti.quant.fixed, when we know the stored values must be positive, the

user can choose to save the sign bit for one more significand bit and get a higher

precision. Note that, different from IEEE754 where the sign bit is the leading bit of

the format, in our system we include the sign bit as part of the fraction bits. This is

an intentional design to simplify the “shared exponent" case, as introduced below.

Shared exponents In simulations, real values often have physical meanings, and

components of a physically meaningful vector typically do not need the same

amount of precision, when their absolute values differ a lot. For example, in a

3D velocity vector �⃗� = (𝑢, 𝑣, 𝑤)𝑇 , if we know the x-component 𝑢 has much larger

(absolute) value compared to y- and z-components, then we probably do not care

about the exact value of 𝑣 and 𝑤. This motivates us to use a “shared exponent” for

all components, and leave more bits for components with larger absolute values.

We illustrate the internal organization of the real number types in Fig. 5-4.

4 .3 Compute types

Since most of the custom data types are not natively supported on hardware, we

usually have to resort to decoding/encoding mechanisms to translate between rep-

resentations that are storage-friendly and those are computation-friendly (Fig. 5-5,

top). This means we have to specify a compute type for each custom data type:

i21 = ti.quant.int(bit=21, compute=ti.i64)
bfloat16 = ti.quant.float(exp=8, frac=8, compute=ti.f32)

By default, the system will use i32 and f32 as compute types for integral and

real types.

For performance considerations, it may be occasionally profitable to directly

operate on the custom types without encoding/decoding, especially when the hard-
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Figure 5-4: Real number types representing a 2D vector (𝑥, 𝑦). .

ware supports related operations (Fig. 5-5, bottom). We show a few usages of this

type of quantization in section 7 .2 and 7 .4.

4 .4 Bit adapters

Loading and storing data with custom types are typically not natively supported

on hardware, so we need two types of bit adapters to pack custom data types into

hardware supported data types with bit width 8, 16, 32, 64:

• Bit structs allow users to pack custom data types into hardware-native types.

For example, a u16 bit struct may contain u5, u6, u5 as components.

• Bit arrays pack repeated data types. For example, users can use a 32-bit bit

array to store 32 × u1 types or 8 × i4 types.

We extend the data layout language of Taichi [49]. Bit adapters are extensions

to the existing Taichi Structural Node (SNode) system. We refer the readers to [49]
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Figure 5-5: Two types of quantization investigated in our work. Note that “Type
B” quantization may not be always possible and profitable compared to “Type A”,
since not all custom data types can be directly manipulated by hardware.

for more details on SNodes, which are not a prerequisite to the remaining of this

manuscript.

A bit struct serves similarly to a struct, but has bit-level granularity. The fol-

lowing code declares two fields of quantized data types, and materialize them into

two 2D 4 × 2 arrays:

u4 = ti.quant.int(num_bits=4, signed=False)
i12 = ti.quant.int(num_bits=12)

p = ti.field(dtype=u4)
q = ti.field(dtype=u4)

ti.root.dense(ti.ij, (4, 2))
.bit_struct(num_bits=16)
.place(p, q)

The p and q fields are laid in an array of structure (AOS) order in memory. Note

the containing bit struct of a (p[i, j], q[i, j]) is 16-bit wide.

Let’s now look at a more practical example. In a 3D Eulerian fluid simulation,

a voxel may need to store a 3D vector for velocity, and an integer value for “cell

category" with three possible values: “source", “Dirichlet boundary", and “Neu-

mann boundary". The developer can then use a single 32-bit bit_struct to store
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all information on a voxel:

velocity_component_type =
ti.quant.float(exp=6, frac=8, compute=ti.f32)

velocity = ti.Vector(3, dtype=velocity_component_type)

# Since there are only three cell categories,
# 2 bits are enough
cell_category_type =

ti.quant.int(bits=2, signed=False, compute=ti.i32)
cell_category = ti.field(dtype=cell_category_type)

# The bit struct for 512x512x256 voxels
voxel = ti.root.dense(ti.ijk, (512, 512, 256))

.bit_struct(num_bits=32)

# Place three components of velocity into the voxel,
# and let them share the components.
voxel.place(velocity, shared_exponent=True)
# Place the 2−bit cell category
voxel.place(cell_category)

The compression scheme above allows us to store 13 bytes (4𝐵 × 3 + 1𝐵) into

just 4 bytes. Note that users can still use velocity and cell_category in the com-

putation code, as if they are float32 and uint8.

Figure 5-6: The bit_struct for a 3D smoke simulation voxel. Three components
of velocity (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) share one common exponent which is placed in the highest
6 bits. The fractions of velocity occupy 24 following bits. The cell_category is
placed in the lowest 2 bits.

Bit arrays are micro data structures that reinterpret hardware-native data types

into arrays of low-bit types. For example, a programmer may want to store 8 × u4
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values in a single u32 type, to represent bin values of a histogram (Fig. 5-7):

bin_value_type = ti.quant.int(num_bits=4, signed=False)

# The bit array for 512x512 bin values
array = ti.root.dense(ti.ij, (512, 64))

.bit_array(ti.i, 8, num_bits=32)

# Place the unsigned 4−bit bin value into the array
array.place(bin_value_type)

Figure 5-7: The bit array for bin values of a histogram. Eight 4-bit components are
packed in a single u32.

4 .5 Decoupling numerical formats from computation

Similar to Halide [103] that decouples scheduling from algorithms, our system

decouples numerical formats from computation.

This decoupling has crucial practical benefits in quantized simulations: it is

challenging to predict how many bits are required for a numerical type in simula-

tion, and the only way to confirm a quantization scheme does not cause too much

truncation error, is to get the simulation running and observe the simulation result,

quantitatively or qualitatively. This means the search for the optimal quantization

scheme is, unfortunately, repeated trial-and-error. Real simulation code is much

more complex, the only way to allows users to rapidly experiment with different

quantization schemes is through a system design that separates numerical formats

from the computation.
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5 Code generation

In this section, we present a basic implementation of our compilation system,

which mechanically translates the operations on custom data types to executable

instructions on processors. We leave discussion on possible domain-specific opti-

mizations to section 6 .

Our system is implemented based on Taichi, which has a hierarchical static-

single assignment (SSA) intermediate representation (IR) system. Our system runs

on x64, ARM64, CUDA, and Apple Metal devices. For x64, ARM64 and CUDA,

code is just-in-time compiled using LLVM; for Apple Metal, Taichi emits Metal

Shading Language source files and then leverages the Metal runtime system to

launch GPU kernels.

5 .1 Type system

We replaced the original type system of Taichi, which only supports primitive data

types such as int32 and float32. We developed a new type system in the form of

a hierarchical data structure composition system, internally implemented using a

shallow tree of data types. See Fig. 5-8 for illustrations.

5 .2 Loading and storing custom integers

Loading a custom integer type from memory needs addressing and decoding. For

addressing, we introduce bit pointers that precisely represent the starting bit of a

custom integer type. Decoding is simply zero extension for unsigned integers and

signed extension for signed ones. Similarly, custom integer stores need addressing

and encoding (truncation).

Bit pointers Classical pointers only have byte granularity (“byte pointers”, such

as char * in C), but in our system we want a finer-resolution pointer at bit granu-

larity, denoted as “bit pointer”. A bit pointer has two components:
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Figure 5-8: Illustration of our new type system. Here we show 3 examples of
16-bit bit_structs/bit_arrays. Top: One 6-bit custom integer (“ci” in short)
and a floating-point number with 5-bit exponent and 5-bit fraction are placed in
the bit_struct. Middle: There are one 8-bit fixed-point number and one 8-
bit custom integer placed in the bit_struct. Bottom: A 16-bit bit_array is
composed of four 4-bit custom integers.

1. a classical byte pointer that points to a byte or any other primitive types such

as i32, i64;

2. an offset value that specifies a bit-level offset within the primitive type.

See Fig. 5-9 for an illustration.

Loading from and storing to bit pointers Hardware-native load/store instruc-

tions can only operate at u8, u16, u32, u64 granularity. Therefore, to load or store

data addressed by a bit pointer, we have to “simulate” partial bit loads and stores

using hardware-supported memory operations and a series of bit operations (such

as shifting) to extract or insert the bits we want.

Loading is relatively easy. We simply load the entire bit struct and use simple

bit operations to extract the needed bits. For example, to extract the [5, 8) bits from

a 32-bit bit struct 𝑠, we can simply let the code generator emit (s>>5)&7.

185



Storing to a bit pointer means partially writing of these primitive types. This

can be done via a load, a series of bit operations (Fig. 5-10), and finally a store. It is

worth noting that sometimes multiple threads may write to the same bit struct, so

we need the following read-modify-write operation to be atomic for thread safety.

Note that the atomic read-modify-write (atomicRMW) has to be implemented via

a while loop plus atomic compare-and-swap (atomicCAS) , and is relatively expen-

sive. We implement corresponding compiler optimizations to avoid atomicRMW

as much as possible when thread safety is not a concern (section 6).

5 .3 Efficiently decoding and encoding real numbers

Fixed-point numbers Since fixed-point numbers are simply integers multiplied

by a compile-time constant scaling factor, after we load the underlying integer, the

real number can be easily decoded by multiply the integer by the scaling factor.

Encoding is the exact reverse process.

On fixed-point atomic adds, we override the decode-compute-encode cycle. We

directly scale the real increment into an integer increment, and then use an atomic

add on the integer type instead. This allows us to use atomic adds on integer to

replace atomic adds on real numbers. In some cases, such as on OpenGL ES and

Metal where only integral atomic adds are supported via the API and hardware,

using integral instead of floating-point atomic add leads to a significant perfor-

mance improvement (section 7 .4).

Rounding We adopt the round to nearest scheme when casting the scaled real

number to an integer. Enforcing the current rounding scheme is critically impor-

tant and has a direct impact on simulation results. See Fig. 5-11 for a comparison

between different rounding schemes.

Floating-point numbers have exponent and fraction bits, which we handle in-

dependently. For the fraction part, we simply adopt an integer truncation with

rounding to nearest. The exponent part, however, cannot be simply truncated. It

is worth noting that the exponent format of IEEE 754 floating-point numbers does
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not use two’s complement for negative numbers2, hence we need an integer to add

operation before we truncate. Overflowing exponent bits are currently treated as

undefined behavior, and in practice, we do not find this to be a problem as long as

enough exponent bits are reserved.

Subnormal numbers Our system does not support subnormal floating-point num-

bers. These numbers are directly treated as zeros when encoding. To simplify and

accelerate the decoding/encoding process, we turn on the “flush to zero" (FTZ)

flags on CPU and GPUs float32 data types.

Shared exponents Floating-point numbers with a shared exponent need special

treatment. Suppose now we are encoding a set of float32 numbers into binary

bits. Denote the numbers as exponent-fraction pairs (𝑒𝑖, 𝑓𝑖), where 𝑒𝑖 and 𝑓𝑖 can be

extracted from the IEEE 754 floating-point compute type via cheap bit-wise oper-

ations. The encoding process works as follows:

1. Compute the maximum exponent of all floating-point numbers, 𝑒 = max{𝑒𝑖}.

Encode 𝑒 to the exponent type format of the shared exponent type.

2. Each number now has an exponent offset 𝑜𝑖 = 𝑒 − 𝑒𝑖. For 𝑒𝑖 ̸= 0, we have

to prepend the fraction part with 𝑒𝑖 zeros. The padding zeros may lead to

a precision degradation on values with small 𝑒𝑖, but having a small 𝑒𝑖 itself

implies the value is less important compared to the largest value sharing the

same exponent.

3. Insert the shared exponent 𝑒 and fractional bits into the bit struct.

When decoding we need to reconstruct the exponent offset 𝑜𝑖 from each fraction

bits. 𝑜𝑖 can be reconstructed via a call into __builtin_clz, which computes the

2For example, the exponent of the float32 type has range [−126, 128) instead of [−128, 128).
The exponent of the represented floating-point number is 2𝑒−127, where 𝑒 is the unsigned integer
represented by the exponent bits.
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leading zeros of the fraction part 3.

In practice, the decoding/encoding procedures for custom floating-point for-

mats are tricky to get right, since there are a lot of variants such as signed v.s. un-

signed, normal v.s. FTZ, shared v.s. non-shared exponents. Our implementations

are included in the taichi/codegen/codegen_llvm_quant.cpp file.

6 Domain-Specific Optimizations

Theoretically, everything we have described so far can be implemented via a C++

library, with heavy operator overloading and templated data type classes. A “quan-

tization library” in C++ may not be easy to use, but if zero-cost abstractions are

properly used, it would have no performance difference from our domain-specific

language. In this section, we show that, apart from usability, our compiler-based

approach also has fundamental performance advantages over the library-based

approach. This is because our tailored compilation system can conduct domain-

specific optimizations that general-purpose compilers (such as gcc and clang) are

not capable of.

Bit structs and bit arrays are first-class citizens of our compilation pipeline. The

optimizer can easily analyze and optimize memory operations on their containing

data types, leading to higher performance.

Before we detail our automatic optimizations, we stress that, if the data types

are implemented via a “quantization library”, a programmer can do all these op-

timizations manually through tedious low-level engineering. However, these op-

timizations are highly coupled with the underlying data layout and format, and

manual optimization locks the code to a particular quantization scheme, leading

to a “leaky abstraction”. Since seeking the optimal quantization scheme needs re-

peated trial and error and even making problem-specific adjustments, manually

doing the optimizations is not practical. Benchmarks that validate the effective-

3The most straightforward way to compute the exponent offset is to use a std::log(float
) function call. However, this is too expensive in practice. Therefore we heavily use bit-wise
operations that are much cheaper.
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ness of these optimizations are detailed in section 7 .1 and 7 .2.

6 .1 Bit struct store fusion

In real-world applications, fields in a single bit struct are often accessed together, so

it is highly possible that different components of a bit struct get stored by multiple

statements in a single kernel. In this case, we can use a single atomicRMW for all

the stores into that bit struct.

We introduce a new statement, namely BitStructStoreStmt(addr, field1,

field2, ...), in extension to the original general-purpose GlobalStoreStmt(addr

, field) in Taichi IR, for domain-specific optimizations on bit struct stores.

We also add a few tailored optimization passes. The first pass converts GlobalStoreStmt

into BitStructStoreStmt for easier analysis, and the second pass merges related

BitStructStoreStmt into a single equivalent BitStructStoreStmt. See our supple-

mental document for a real-world example of this IR optimization.

Note that BitStructStoreStmt takes multiple field inputs. In the code gener-

ator, we additionally implemented a multi-field version of the partial bit storing

procedural. This improves performance since the expensive atomicRMW is now

amortized by all the fields to store into that bit struct.

We only optimize bit struct stores, because bit struct loads (load from an address

and then extract the bits) are relatively easy to analyze and optimize by a general-

purpose optimizer, such as the LLVM target-independent optimizer we are using.

In contract, bit struct stores involve atomicRMW and general-purpose optimizers

tend to be conservative regarding optimization. This is likely due to the difficulty

of aliasing analysis, and the fact that in their IR a single atomicRMW statement

would have been lower into quite a few non-trivial basic blocks with complex con-

trol flow connecting them.
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6 .2 Thread safety inference

Take one step further, when there is certainly no data race on the bit struct stores,

we can fully replace the atomicRMW with a much cheaper non-atomic version.

Our compiler searches for two patterns for this optimization:

Element-wise accesses In parallel simulators, many operations happen in an

“element-wise” manner: each independent thread processes one particle or voxel

at a time. Memory loads/stores related to the particle or voxel are then completely

free from data races. In this case, we can safely demote the atomicRMW by a

non-atomic version. For example, in the following 2D grid boundary velocity pro-

jection code,

@ti.kernel
def project_velocity():

for i, j in v:
if j < 3 and v[i, j][0] <= 0:

v[i, j][0] = 0

our optimizer will safely infer that the store to the first component of the velocity

vector at v[i, j] (a bit struct) does not need any atomic operation since no other

thread will access the same bit struct.

Storing the entire bit struct Recall that the reason why we need atomicRMW

instead of the non-atomic version is to prevent overwriting other parts of the bit

struct, which may be written simultaneously by another thread. However, it may

be the case that the entire bit struct is stored in a single BitStructStoreStmt, then

we do not need to worry about overwriting, since this thread is writing to the

whole bit struct anyway. We find this pattern to be particularly frequent on particle

and grid simulations.
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6 .3 Bit array vectorization

Consider the following example, where data are copied from a 2D 128 × 128 u1

(“boolean”) array x to y:

x = ti.field(dtype=ti.quant.int(bits=1, signed=False)
y = ti.field(dtype=ti.quant.int(bits=1, signed=False)

cell = ti.root.dense(ti.ij, (128, 4))
cell.bit_array(ti.j, 32).place(x)
cell.bit_array(ti.j, 32).place(y)

@ti.kernel
def copy():

for i, j in x:
y[i, j] = x[i, j]

Although our system can easily improve storage efficiency, computationally

this bit-wise for loop is inefficient for two reasons. Firstly, we have to use hardware-

native 32-bit integer registers for our simulated 1-bit values, which uses only 1/32

of the operation bitwidth. Secondly, when store the results bit-by-bit, the code

generator has to issue a large number of expensive atomicRMW operations for

thread-safety, since multiple CPU/GPU threads may write to different bits within

a single u32, leading to data races.

Bit-wise for loop vectorization The situation above inspires us to vectorize bit

array load, store, and arithmetics, so that each iteration processes a whole 32xu1

bit array instead of a single u1. This not only utilizes the full bitwidth but also

eliminates the need for atomicRMW. Unlike traditional vectorized operations sup-

ported by modern processors (such as SSE and AVX), bit-level vectorization has

limited hardware instructions. Basically, the only “bit-vectorized" operations of-

fered natively by hardware are bit-wise and (&), or (|), and xor (^).

At this point, the compiler can efficiently handle simple element-wise load/s-

tore operations, plus some Boolean arithmetics. We further conduct two optimiza-
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tions that improve code generation quality and capability.

Bit-vectorized loads with offsets In simulations it is often useful to load data

from neighborhoods, such as x[i+1, j] and x[i, j+1]. Assuming bits are vector-

ized along the j axis, a vectorized load of x[i+1, j] is perfectly aligned with the

bit arrays, but that of x[i, j+1] is not.

Actually, in most cases, data to fetch in a vectorized loop iteration do not per-

fectly align with the underlying bit arrays. Luckily, if we know the offset at compile-

time, which is most likely true for stencils, we can still leverage most of the bit

vectorization benefits by loading two adjacent bit array entries and use cheap bit

operations to synthesis the load result, as shown in Fig. 5-12.

After this optimization, the following code snippet can be efficiently compiled:

@ti.kernel
def copy_with_offset():

ti.bit_vectorize(32)
for i, j in x:

y[i, j] = x[i, j + 1]

Bit-vectorized integers and adders Even when operating on binary inputs and

outputs, intermediate values may have large value ranges. To represent these in-

termediate values efficiently, for example, we store a 𝑛-bit 32-wide vectorized in-

teger using 𝑛 u32 integer buffers, where the 𝑖-th buffer stores the 𝑖-th bit of all the

integer values being vectorized. These “bit-vectorized” integers allow us to treat

each bit of the 𝑛-bit integer in a vectorized manner, independent of other bits on

the 𝑛-bit integer.

Adding two bit-vectorized integers can be implemented using cheap bit oper-

ations, just like implementing a “full adder” using logic gates. Besides adding, we

also implemented comparison operations between bit-vectorized integers using

bit-wise operators.

In the following example, since variable count as range [0, 4), we use a 2-bit

vectorized integer to store its value.
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@ti.kernel
def count_neighbors():

ti.bit_vectorize(32)
for i, j in x:

count = 0
count += x[i, j + 1]
count += x[i, j − 1]
count += x[i + 1, j]
y[i, j] = count == 3

7 Applications and Evaluations

In this section, we showcase the applications of our system and evaluate its per-

formance and accuracy under memory space constraints. We set up three mi-

crobenchmarks (each round 50 lines of code) and three large-scale benchmarks (100

to 1500 lines of code). The large-scale simulation statistics are listed in Table 5.2.

7 .1 Microbenchmarks

We set up a suite of microbenchmarks to unit-test our domain-specific optimiza-

tions and study their impact on performance. Details and code of the benchmark

cases are in the supplemental document.

The numbers obtained with “all optimizations off” mimics the performance of

a library-based approach: via template metaprogramming and operator loading,

the member functions of quantized data type classes directly emits operations to a

general-purpose compiler, LLVM in our case. LLVM will not be able to merge the

bit struct stores, since it lacks a high-level understanding of the bit struct stores.

The benchmark results (Table 5.1) validate that a compiler-based approach is

substantially beneficial compared to a more traditional library-based approach.

Computing the geometric mean of running time of all the cases on CPUs and

GPUs, turning on store fusion leads to 1.43× (x64 CPU)/1.91× (CUDA) speed up,
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and further turning on atomic demotion leads to another 1.93× (x64 CPU)/2.15×

(CUDA) speed up.

7 .2 Game of Life

We first test our system on the classical Conway’s Game of Life, a 2D grid-based

simulation that is extremely simple to code but computational hungry at a high

resolution. Each cell (𝑖, 𝑗) can have two states, either live (𝑙𝑖,𝑗 = 1) or dead (𝑙𝑖,𝑗 =

0). The cell states follow a set of simple evolution rules, depending on its 3 × 3

neighborhood:

• Birth: each dead cell with exactly three neighbors becomes a live cell;

• Survival: each live cell with two or three live neighbors continues to be a live

cell;

• Overpopulation: each live cell with four or more live neighbors dies;

• Isolation: each live cell with zero or one live neighbor dies.

Essentially, the next-step cell state 𝑙′𝑖,𝑗 is defined as

𝑙′𝑖,𝑗 = 𝑓

(︃
𝑖+1∑︁

𝑥=𝑖−1

𝑗+1∑︁
𝑦=𝑗−1

𝑙𝑥,𝑦

)︃
,

where 𝑓 maps the number of active neighbours into the cell state of the next time

step.

Storage We created two copies of the grid, namely 𝑙′ and 𝑙, and iterate back and

forth. We use two hierarchical grids to store the current and next frames. Using bit

arrays that pack 32 u1 (1-bit unsigned integer) type into a single u32, each cell takes

only 1 bit in each grid, leading to a 2 bit/cell total storage footprint. Note that in

traditional languages such as C, programmers will have to use the char (u8) type

for each cell, unless they manually pack/unpack the states. In our system, users
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can effortlessly improve storage efficiency by 8×, without any modification of the

computation code.

Initialization To demonstrate the capability of our Game of Life simulator, we

initialize the grid using tiled OTCA metapixels4. An OTCA metapixel consists of

2048 × 2048 cells, and it has an interesting behavior: when looking at a distance,

the whole 2048 × 2048 metapixel behaves like a single 1 × 1 Game of Life cell (Fig.

5-13). We also set up a Game of Life pattern with words “Quant Sim” using 70×70

OTCA metapixels, reaching over 20 billion cells in a single simulation (Fig. 5-

1). For a high-resolution visualization of this demo, please refer to our video and

supplemental material.

The effectiveness of bit vectorization In each time step of Game of Life, a cell

loads its 3×3 neighborhood states from the old state buffer and stores its new state

to a new state buffer. Bit array vectorization improves performance by simultane-

ously handling 32 cells in a single thread. We compare the running time between

three different implementations:

1. QuickLife from Golly5, a fast algorithm leveraging sparsity in Game of Life.

The implementation in Golly is highly optimized on CPUs.

2. Ours, without bit vectorization. Since this implementation only utilizes 1/32

of the bitwidth and leads to excessive atomicRMW, we do not expect it to

deliver satisfactory performance.

3. Ours, with bit vectorization. This is essentially (2) with a extra ti.bit_vectorize

(32) pragma. Our compilation passes do the vectorization job automatically.

As expected, the performance of our non-vectorized implementation is much

worse than QuickLife on CPU, while the same algorithm achieves comparable per-

formance with the significant optimization of bit vectorization on CPU. The effec-

4https://www.conwaylife.com/wiki/OTCA_metapixel
5http://golly.sourceforge.net/
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Table 5.3: Per step running time of three different implementations, on CPUs and
GPUs. The benchmark is initialized using a random pattern with 416902 active
cells with 50% live cells. We run CPU benchmarks on an Intel i7 processor (six
cores each at 2.6 GHz) and 16GB of memory. We run GPU benchmarks on an
NVIDIA RTX 3080 GPU with 10GB of GPU memory.

Implementation Time per step (CPU) Time per step (GPU)

QuickLife 318.5 ms N/A
Non-vectorized brute-force 9313.4 ms 546.0 ms

Vectorized brute-force 417.2 ms 3.4 ms

tiveness of bit vectorization is further verified on GPU where the vectorized ver-

sion is more than 150× faster than its non-vectorized counterpart (Table 5.3).

Our implementations do not utilize spatial sparsity yet, and compared to Quick-

Life it does more work. This partially explains why our vectorized simulator is 31%

slower than QuickLife on CPUs.

7 .3 Eulerian fluid simulation

We developed a sparse-grid-based advection-reflection [132] fluid solver to eval-

uate our system on grid-based physical simulators.

For advection, we use the MacCormack scheme [109], with RK3 path integra-

tion. For projection (“reflection"), we use multigrid preconditioned conjugate gra-

dients (MGPCG) [86] to solve the Poisson problem. We follow the MGPCG solver

design in [49]. We use two-level pointer grids (ti.root.pointer(ti.ijk, ...).

pointer(ti.ijk, ...).dense(ti.ijk, ...).place(...)) for each level of the grid

hierarchy.

The majority of memory consumption comes from the top level of the grid hi-

erarchy. This is because the second level only has 1/8 voxels due to multigrid

coarsening. Also note that physical properties such as dye density (𝑅,𝐺,𝐵) and

velocity (𝑢, 𝑣, 𝑤) only exist at the top level, and we need to store multiple copies of

them for the MacCormack advection scheme.
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Quantization scheme We focus our quantization on the advection solver, since

it costs the majority of memory space (84 out of 110 B). By representing each com-

ponent of velocity (𝑢, 𝑣, 𝑤) using a 21-bit fixed-point number, we pack them in a

single 64-bit bit struct. Also, we managed to pack three channels of dye density in

a 32-bit bit struct by using floats with shared exponents: we use 9 bits for fractions

and 5 bits for exponent, which adds up to 32 bits. Since we adopt a MacCormack

advection solver, we use three bit structs to store 𝑣𝑡, 𝑣𝑡+1 and an auxiliary 𝑣𝑡+1 re-

spectively. Similarly, the dye density needs three bit structs. Note that another bit

struct is used as the velocity after the reflection operator being applied. In this way,

each voxel occupies 44 bytes, while using float32 needs 84 bytes (Fig. 5-14).

The effectiveness of shared exponents To prove the effectiveness of shared ex-

ponents, we compare shared exponent, non-shared exponent and fixed-point us-

ing a 2D smoke simulation. All of these experiments use one 32-bit bit struct to

store dye density (𝑅,𝐺,𝐵) channels. In contrast, the uncompressed float32 refer-

ence uses 96-bits per voxel.

For the simulation with shared exponent, we use 5 bits for exponent and 9 bits

for fraction. The non-shared exponent simulation also uses 5 bits for exponent, but

only 5 bits for fractions for each channel. The fixed-point simulation uses 10-bit

fixed-point numbers per channel. We show the comparison result in Fig. 5-15.

Note that there is an exponential decay of density in the simulation, and ulti-

mately all pixels will decay into the white background color. When compared to

the float32 version. In the fixed-point simulation, the smoke color stopped decay-

ing after a few seconds and does not look clear. This is because the precision is too

low to distinguish small changes. The non-shared one looks better but still suffers

from the same problem. The shared exponent version, however, has sufficient frac-

tion bits and looks much closer to the float32 version compared with two other

methods. To quantitatively study the preciseness of the decaying behavior using

different data formats, we sum up all the cell density (Table 5.4) and find the shared

exponent version has the closest total density compared to the float32 reference
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Table 5.4: Total density comparison. Note that since the decaying factor is a con-
stant on all pixels and channels, the total density is a predictable value over the
simulation, regardless of the turbulent nature of the fluid simulation. This experi-
ment runs on a GTX 1080 Ti GPU with 11 GB memory.

Data Type Total density

float32 15425.828
shared exponent: exp5 + frac9 17072.586

fixed-point: 10 24662.654
non-shared exponent: exp5 + frac5 41368.633

Table 5.5: Performance comparison of Eulerian fluid advection. This experiment
also runs on a GTX 1080 Ti GPU with 11 GB memory.

Data Type TimeVelocity Dye density

float32 float32 25.052 s
shared exponent: exp5 + frac9 fixed-point 10 31.776 s

fixed-point 10 fixed-point 10 24.760 s

simulation. This proves that shared-exponent floating-point formats achieve both

good precision and dynamic range, compared to non-shared exponent floating-

point formats and fixed-point formats.

Performance of quantized simulations Finally, we compare the performance of

our quantized simulator against the float32 reference implementation. We find

the quantization scheme using shared exponent to be roughly 27% slower than the

full-precision version, likely because encoding/decoding floats with shared expo-

nent takes some additional computation. Interestingly, the all-fixed-point version

is slightly faster than the reference version, despite needing more floating-point

multiplications to encode/decode. Since the advection kernel is memory-bound,

the quantized version consumes less memory bandwidth, hence running faster.
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7 .4 Moving Least Squares Material Point Method

To test our system on hybrid Lagrangian-Eulerian methods where both particles

and grids are used, we implemented the Moving Least Squares Material Point

Method [48] with G2P2G transfer [124].

In MPM simulation, per-particle data is very memory- and bandwidth-consuming.

Note that in MLS-MPM over 80% storage is for particles. A 40963 background

sparse grid is used, leveraging the first-class spatially sparse data structure sup-

port in the original Taichi system. We use a 43 leaf block size.

When simulating elastic objects, we store position, velocity, and deformation

gradients on each particle. After a few trial-and-error, we end up with a quantiza-

tion scheme that compressed 68 B particle attributes to 40 B, a 1.7× improvement.

Note that in MPM we also need to store the grids and other acceleration structures

such as the particle list, which is not quantized here. The overall memory efficiency

improvement is 1.3×. See Fig. 5-17 for more details on the quantization scheme. A

235M-particle visual demo is shown in Fig. 5-19.

Performance In a GPU MLS-MPM simulator, the performance is limited by mem-

ory bandwidth and available FLOPs. Using quantization increases the amount

of computation due to the need for encoding/decode, yet at the same time it re-

duces the memory bandwidth. We conduct a systematic performance study on

our system, scanning all possible combinations of quantization, optimization, and

particle-grid transfer scheme (separate P2G/G2P and fused G2P2G [124]). Results

are listed in Table 5.6. Interestingly, we find our quantized simulator runs 1.03×

(G2P2G)/1.14×(P2G+G2P) faster than the full-precision simulator, likely because

the quantized simulator saves memory bandwidth. We get higher speed up on

the P2G+G2P transfer scheme, because this version with two kernels needs more

memory bandwidth. Our domain-specific optimizations leads to 1.09× (G2P2G)

and 1.80×(P2G+G2P) higher performance on the quantized simulator. Wang et

al. [124], a CUDA MLS-MPM solver heavily engineered towards performance,

our quantized version is 3× slower, most likely due to the fact that we did not
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Table 5.6: Domain-specific optimization ablation study on the MLS-MPM bench-
mark, with and without the G2P2G optimization [124]. Results are collected on a
RTX 3090 GPU. We seed 16,777,216 particles in a 2563 domain.

Optimizations G2P2G Time (s) P2G+G2P Time (s)

No optimization 16.52 28.43
Store fusion only 15.99 17.19
Atomic demotion only 16.36 16.69
All optimizations on 15.09 15.77

No quantization 15.57 17.96

implement the AOSOA data layout optimization. However, regarding memory

consumption our system is 5.7× more efficient (1.4GB ours v.s. 8GB [124]). Note

that that memory efficiency gap is a combination of our quantization scheme and

the fact that [124] is optimized towards performance instead of memory.

Quantization on mobile devices Since mobile devices have the relatively lim-

ited computing power and a strong need for real-time response, typically only

small-scale simulations run there and storage is not really an issue. Surprisingly,

we still find using quantized data types on the background grid to be beneficial:

since mobile GPUs usually only has high-performance native atomicAdd support

for i32 but not for f32, using ti.quant.fixed(fraction=32) on the grids con-

verts software-emulated f32 atomicAdd to hardware-native i32 atomicAdd sig-

nificantly improves P2G performance in our MLS-MPM program on an iPhone XS

(Fig. 5-18). See our supplemental video for more visual comparisons.
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Figure 5-18: A benchmark of 36, 000 MLS-MPM particles with 256×256 grid nodes,
on an Apple iPhone Xs. Using our ti.quant.fixed(fraction=32) types on the grid
nodes improves FPS by 1.4× compared to native float32.

7 .5 User studies

We have done a round of user study to investigate how much visual difference

quantization injects into the simulator. We collected five groups of simulation

videos, two of them are generated using full-precision float32 simulators, and one

of them is generated using quantized simulators. We present one of that float32

videos and ask the user to select the one he thinks is closer to the video just played

from the remaining two videos. The volunteers can also choose “cannot decide”

if he or she thinks two videos are equally close to the first video. We asked 20

volunteers and collected 100 responses in total. User study cases and results are

presented in Fig. 5-20. Our supplemental video includes all the user study videos.
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2D v.s. 3D We find that 3D results lead to more “cannot decide”. We hypothesis

this is because in 2D users see everything in the simulation, so relatively more

information is exposed. In 3D occlusions makes judgments harder.

Solid v.s. Fluids Surprisingly, most users can easily point out slight differences

in solid simulations. This is not because quantized simulators are not realistic, but

because quantization injects extra noise to the system and leads to a different final

particle distribution. In fluid simulations, deciding becomes harder.

The 3D fluid results (case 3 and 5) are promising: users are mostly making

random guesses on these cases.

7 .6 Discussions

Productivity Thanks to our decoupling of numerical data formats from numer-

ical computation, the amount of code modified to transform a traditional full-

precision physical simulator into a quantized simulator is no bigger than 3% of

the total solver code. For example, the whole MLS-MPM solver has roughly 1000

lines of code, while specifying a single quantization scheme takes only 30 lines of

code (3%). To quantize the 900-line fluid simulator, no more than 20 (2.2%) lines of

code are added.

Failure cases It is not uncommon that using data types that have too low preci-

sion or dynamic range leads to simulation artifacts. Fortunately, our system which

allows rapid trial-and-error, and allows programmers to simply use more bits in

this case. For example, we found using 16-bit fixed-point numbers for fluid vol-

ume ratio 𝐽 = 𝑉𝑡/𝑉0 [116] leads to a clear volume gain. This can be easily fixed by

letting 𝐽 have 23 bits instead of 16 (Fig. 5-21).

204



8 Conclusion

In order to make quantized simulation practically programmable, we have devel-

oped a tailored programming interface, compilation system, and domain-specific

optimizations. Our system is orthogonal to many of the existing work to acceler-

ating simulations, including sparse data structures [89, 110, 41, 49]. Using our sys-

tem, programmers can effortlessly switch between different quantization schemes,

leading to 1.57 ∼ 8.00× memory space efficiency improvement. A user study

shows that 3D quantized simulation results are indistinguishable from full-precision

ones. Our system is performant and easy to use: by modifying no more than 3% of

the simulator code, a developer can quantize a MLS-MPM or Eulerian fluid simu-

lator, running at comparable speed to the full-precision version.

Future work Currently, programmers still have to manually experiment with dif-

ferent quantization schemes. It would be helpful to have a system that automati-

cally figures out suitable quantization schemes. Regarding engineering, adding a

debugging system that detects overflowing of fixed- and floating- point numbers

can help programmers more easily diagnose issues in a quantization scheme. Al-

though our discussions are focused on a shared-memory environment, our quan-

tization compiler can also help multi-GPU and distributed memory computation,

since quantized physical states can significantly reduce communication overhead

in those scenarios.
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Figure 5-9: Byte pointers “*” and bit pointers “ˆ”. Top left: A traditional byte
pointer only has a byte-level resolution. Bottom: Bit pointers have a bit-level reso-
lution, and can easily point to components of bit structs and bit arrays.

Figure 5-10: An illustration of storing bits partially in a bit struct. Here we show
the process of inserting a 3-bit custom integer placed in an 8-bit bit struct, using a
series of cheap bit-wise operations.
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Figure 5-11: Rounding scheme matters. In this 2D MLS-MPM experiment [48] we
use 16-bit fixed-point numbers for the deformation gradient variable on each par-
ticle. We stick to the “round to nearest” scheme, which ensures a close approxima-
tion to the float32 reference. Note that the “round up” scheme leads to a shearing
artifact to the elastic material (red), and that “round towards zero” results in an
expanding volume.
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Figure 5-12: Bit-vectorized loads with offsets. In this simplified example, we store
the bit array using uint8 and each node represents an element in the bit array.
To load x[i, j+1] (red box), we first need two vectorized loads (green and blue
nodes). Then we use bit shifting operations to extract the target bits and move
them to corresponding locations. Finally, we merge them using a bit “or” opera-
tion.

Figure 5-13: The evolution of the 15× 15 galaxy pattern. Each cell is a 20482 OTCA
metapixel, and a metapixel step is 32768 Game of Life time steps. Each metapixel
evolves following the Game of Life rules when zoomed out.
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Figure 5-14: Eulerian smoke simulation quantization scheme. For each voxel, we
pack velocity (𝑢, 𝑣, 𝑤) in a 64-bit bit struct by three 21-bit fixed-point numbers.
Dye density (𝑅,𝐺,𝐵) is represented by 32-bit shared-exponent numbers with 5
bits for exponent and 9 bits for fraction. In this way, our smoke advection memory
consumption is reduced by 48% from 84 bytes to 44 bytes. Considering 26 B from
the MGPCG solver, the memory consumption per voxel for the entire fluid solver
is reduced from 110B to 70B, a 1.57× improvement.
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Figure 5-15: Shared exponent effectiveness comparison. We compare shared ex-
ponent, non-shared exponent, and fixed-point for a 2D smoke simulation. Notice
shared exponent float looks closer to float32 version while non-shared exponent
float and fixed-point suffer from low precision due to fewer fraction bits. Note
that fluids are highly turbulent so the dye patterns are different from time to time,
even when using float32.
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Figure 5-16: Two quantized smoke simulations. We use the quantization scheme
described in section 7 .3. Both simulation run on a 20483 sparse grid with 421M
active voxels. Top: Smoke initialized from two bunny meshes. Bottom: Smoke
emitting from a spherical source.

Figure 5-17: MLS-MPM particle attribute quantization scheme. For each particle,
we store position (𝑥, 𝑦, 𝑧) using 21-bit fixed-point numbers, velocity (𝑢, 𝑣, 𝑤) using
floating-point numbers with 17 fraction bits a shared 7-bit exponent. For deforma-
tion gradient 𝐹3×3, we use 16-bit fixed-point numbers. We also store material and
color information. This brings down a particle storage footprint from 68 bytes to
40 bytes (1.7× fewer).
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Figure 5-19: A 235M-particle MLS-MPM simulation. (1) 4, 693 elastic tubes fall
down, (2, 3) form an interesting mountain structure, and (4, 5) ultimately collapse
due to instability. Note the tubes are lengthy along the camera direction.
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Figure 5-20: Five user study cases and results. In 2D cases with solids (case 1 and
2), users can point out the float32 version reasonably well. In 3D and fluid cases
(case 3, 4, 5), user feedback is close to random guess.

Figure 5-21: A 12M-particle MLS-MPM fluid simulation with volume ratio 𝐽 on
each particle quantized. Note that using fixed16 leads to a unrealistic volume
gain compared to the float32 reference. The programmer can easily fix this by
adding 7 more bits to the variable and use fixed23 instead.
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Chapter 6

Discussions

We have presented core research contributions of the Taichi programming lan-

guage. This chapter discusses the relationships between Taichi and other program-

ming systems, and potential future work.

1 Relationships to other programming systems

Research in domain-specific languages has effectively bridged the gap between

emerging visual computing patterns and parallel hardware. In this section, we

compare Taichi to related domain-specific programming systems, including TACO [67],

deep learning frameworks (e.g., TensorFlow [3], PyTorch [96], and JAX [14]), Halide [102],

Liszt [30], Simit [69] and Ebb [13]. More discussions on a specific Taichi feature can

be found in the related work sections of previous corresponding chapter.

1 .1 Taichi v.s. TACO

Key difference: Spatially sparse computation v.s. sparse linear algebra.

The Tensor Algebra Compiler [67] is a compiler for sparse linear algebra. TACO

takes holistic sparse tensors as inputs, offering a programming interface that eval-

uates various forms of Einstein sums, such as 𝐴𝑖𝑗 =
∑︀

𝑘 𝐵𝑖𝑗𝑘𝑐𝑘, with each tensor

215



being sparse or dense.

Taichi, on the contrary, offers a Single-Program Multiple Data (SMPD) pro-

gramming interface to manipulate individual voxels in mutable sparse fields (ten-

sors). This not only offers finer granularity, but also enables programmers to pro-

gram imperatively. The benefit of such design is the flexibility to write complex

programs such as physical simulators on the grid, with the majority of arithmetics

being voxel-level in-place sparse tensor operations, often in the form of random ac-

cesses, and parallel loops with complex control flows. The cost of such flexibility, how-

ever, is that Taichi programs are less structured. For example, when expressing ten-

sor linear algebra in Taichi, the compiler will not have a high-level understanding

of the summation expression and will lack the capability to conduct TACO-style

program transformations and optimizations.

Taichi and TACO have different design decisions given different application

domains. Taichi is designed for spatially sparse computation such as sparse-grid

physical simulation, while TACO is designed for sparse linear algebra. The ma-

jority of computation in Taichi, such as stencils, cannot be efficiently expressed in

TACO. Similarly, TACO operations, e.g., sparse matrix multiplication, are not ideal

use cases of Taichi.

1 .2 Taichi v.s. deep learning frameworks

Key difference: Explicit megakernel parallelism v.s. Array-based implicit paral-

lelism.

Deep learning systems (such as TensorFlow [3], PyTorch [96], and JAX [14])

are designed around neural networks with classical layers such as convolution

and batch normalization. Parallelism in these systems is implied by the fact that

these systems typically operate on large arrays and array elements can usually be

processed in parallel. Their design decisions are usually surrounding immutable,

dense tensors (e.g., feature maps) with element-wise or pre-programmed opera-

216



tions.

Taichi has different design goals. Since Taichi programmers have finer pro-

gramming granularity, Taichi is more suitable for relatively more irregular com-

putational patterns. For example, the design of Taichi has advantages over deep

learning frameworks on

• Computer graphics, including physical simulation and rendering;

• Irregular neural network layers (e.g., gathering/scattering) that are emerg-

ing;

• General differentiable programming cases.

Without Taichi, to compose computation that is less regular than classical neu-

ral network operations, developers have to manually write low-level CUDA ker-

nels, or abuse element-wise operations in deep learning frameworks. For example,

with the gather/scatter operations, it is possible to represent an explicit parallel

for-loop in systems like TensorFlow or JAX. However, the developer will then have

to resort to the compiler to fuse the operations and eliminate intermediate tensors.

This may be less productive and efficient compared to programming in Taichi’s

megakernel (SPMD) interface.

Differentiability is a common feature of both Taichi and deep learning frame-

works. However, Taichi has a two-scale system for differentiability while deep

learning frameworks typically only need one scale. Taichi uses source-code trans-

form inside kernels, and a lightweight tape outside the kernels, while deep learn-

ing systems such as JAX directly differentiates the computation on the single-layer

computational graph. The reason why Taichi needs source-code transform is that

computer graphics (especially physical simulation) application typically involves

fine-grained operations with complex control flow, and source-code transform has

minimal runtime cost for differentiation. In contrast, in deep learning workloads,

each low-level operation tends to be relatively coarser-grained, so overheads of a

runtime automatic differentiation system can usually be effectively amortized into

each element or iteration of the operation and ultimately become negligible.
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1 .3 Taichi v.s. Halide

Key difference: decoupling algorithms from data structures v.s. decoupling al-

gorithms from schedules.

Halide [102] is a piece of seminal work that decouples algorithms (such as image

processing operations) from schedules. Schedules in Halide include loop transfor-

mations and vectorization that change the way how computation maps to hard-

ware while preserving the computation ouptuts. Some recent polyhedral compil-

ers adopt similar ideas [7, 88, 120, 8]. Taichi chooses a different way to decom-

pose programs: it decouples algorithms from the internal organization of (sparse)

data structures, allowing programmers to quickly switch between data organiza-

tions to achieve high performance.

Computation-wise, Halide adopts array-based parallelism, just like deep learn-

ing frameworks. The benefit is clear: array-based parallelism preserves more high-

level program structures and opens up the space to decouple schedules from al-

gorithms. In Taichi, however, programmers code in monolithic megakernels with

complex control flow and random accesses, the compiler then automatically ap-

plies a subset of scheduling optimizations that Halide does, including automatic

vectorization and parallelization. This leads to more expressive but less structured

code in Taichi than in Halide.

A megakernel in Taichi can be considered a fully fused pipeline in Halide,

which means the programmer loses some flexibility in controlling recomputation.

While recomputation plays an important role in image processing, practically we

rarely find recomputation is needed in Taichi workloads (especially simulations)

to improve performance.

1 .4 Taichi v.s. Liszt, Ebb, and Simit

Key difference: sparse grids v.s. meshes.

Physical simulation DSLs such as Liszt, Ebb and Simit usually abstract simula-
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tion domains as a graph structure to represent unstructured meshes. For example,

Liszt [30] focuses on solving partial differential equations on meshes. Simit [69]

models the domain as sparse matrices while Ebb [13] employs a relational data

model. On unstructured meshes, these languages offer a higher level of abstrac-

tion than Taichi, and has higher productivity. The strength of Taichi in simulation

is mainly on hierarchical sparse data structures. We leave more discussions on

potential mesh data structure support in Taichi to the next section.

2 Future work

We believe the following directions can be meaningful future work to extend Taichi:

Reusable IR for visual computing Currently Taichi only has a Python frontend,

and it would be meaningful to reuse Taichi IR to build new programming lan-

guages. A set of reusable Taichi IR can easily deliver advanced features such as

spatial sparsity, automatic differentiation, and quantization to other visual com-

puting developers. Note that a new frontend based on Taichi IR does not have to

be a programming language: visual programming, especially those based on node

graphs (see, e.g., the node systems in digital content creation systems such as Au-

todesk Maya and SideFX Houdini), are expressive and intuitive ways to develop

visual computing programs too. Creating a visual programming system based on

Taichi IR will bring our infrastructure to a much wider range of users, especially

artists who prefer node graphs to coding, when expressing their creative ideas.

Interfacing with sparse linear algebra The sparse computation system in Taichi

is best suited for spatial sparsity. Matrix-free solvers (e.g., multigrid-preconditioned

conjugated gradients on sparse and structured grids) can be easily implemented in

the form of highly efficient stencils. However, matrix-free solvers may not always

be the optimal solution for all users. For example, some users may want to simply

create a sparse matrix (e.g., in CSR or COO format) and leverage mature sparse
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linear solvers such as PARDISO [6]. It would he helpful to introduce sparse matri-

ces to Taichi and extend the kernel language to build these matrices efficiently in

parallel.

Auto-tuning Since Taichi decouples data structure (chapter 2) and (quantized)

data format (chapter 5) from computation, it is possible to let an auto-tuner try

different data layouts and formats, and pick one with the optimal runtime perfor-

mance and memory efficiency. For example, when a user wants to figure out a

tailored sparse data structure on a specific computer architecture, having an auto-

tuning system to do that automatically can greatly reduce the burden on the pro-

grammer. It also makes sense to let the auto-tuner figure out a good quantization

scheme with good performance and compression ratio. Other tunable parameters

include GPU block dim and kernel fusion strategy.

First-class support for other data structures So far the only data structure that

Taichi has first-class support for is spatially sparse multidimensional arrays. It

would be meaningful to extend Taichi to include first-class support for various

other data structures such as unstructured meshes.

• Triangular and tetrahedral meshes are conformal to simulation boundaries,

offering higher accuracy near boundary conditions. Furthermore, meshes

can be easily made adaptive. Meshes are frequently used together with dis-

cretization schemes such as finite volume and finite elements, and play an

important role in computer-aided engineering (CAE) applications. Currently,

users have to manually compose mesh data (e.g., face indices of tetrahe-

drons and normal velocity on faces) using 1D, dense data structures in Taichi.

The Taichi compiler does not have first-class support and a high-level un-

derstanding of the represented mesh structures. Furthermore, meshes have

various ways to store the internal data, and the data structure to store the in-

dices of vertices, edges, faces, and elements have a critical impact on memory

consumption and run-time performance.
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• Adaptive structured grids provide opportunities to leverage both adaptiv-

ity and highly efficient memory accesses. A domain-specific compiler can

help to generate highly efficiently parallel stencil kernels, specialized at each

level of detail. Furthermore, cells at the boundary of a resolution level need

special treatment and often result in less efficient kernels compared to those

cells that do not involve resolution change. This opens up more space for

specialization: a high-performance compiler can choose to generate simple,

efficient kernels in uniform-resolution regions, and relatively less efficient

kernels in regions where resolution changes. The runtime system can then

dispatch (8 × 8 × 8 blocked) cells to different kernels. All these should be

made transparent to programmers.

The idea to decouple data structure from computation can be reused in these

future directions. Ideally, combining unstructured meshes and structured grids in

a single program, and providing a unified programming interface on these data

structures, would be extremely helpful to scientific computing developers.
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