The Taichi Programming Language

A Hands-on Tutorial @ SIGGRAPH 2020

Yuanming Hu
What is Taichi?

High-performance domain-specific language (DSL) embedded in \textbf{Python}, for \textbf{computer graphics} applications

- \textbf{Productivity} and \textbf{portability}: easy to learn, to write, and to share
- \textbf{Performance}: data-oriented, parallel, megakernels
- \textbf{Spatially sparse} programming: save computation and storage on empty regions
- \textbf{Decouple} data structures from computation
- \textbf{Differentiable} programming support
Taichi v.s. deep learning frameworks

Why is Taichi different from TensorFlow, PyTorch, NumPy, JAX, ... ?

Quick answer: Taichi uniquely supports **megakernels** and **spatial sparsity**.

Longer answer: Those systems serve their own application domains (e.g., convolutional neural networks) very well, but their design decisions surrounding **immutable, dense tensors** (e.g., feature maps) with **simple, regular operators** (e.g., element-wise add and 2D convolutions) do not serve well more irregular computational patterns, including

- Computer graphics, including physical simulation and rendering
- Irregular neural network layers (e.g., gathering/scattering) that are emerging
- General differentiable programming cases

Without Taichi people tend to manually write CUDA or abuse deep learning programming interfaces. Taichi offers performance, productivity, and portability in those cases.
import taichi as ti

@ti.init(arch=ti.gpu)
n = 320

pixels = ti.field(dtype=ti.float, shape=(n * 2, n))

@ti.func
def complex_sqr(z):
 return ti.Vector([z[0]**2 - z[1]**2, z[1] * z[0] * 2])

@ti.kernel
def paint(t: float):
 for i, j in pixels: # Parallized over all pixels
 c = ti.Vector([-0.8, ti.cos(t) * 0.2])
 z = ti.Vector([i / n - 1, j / n - 0.5]) * 2
 iterations = 0
 while z.norm() < 20 and iterations < 50:
 z = complex_sqr(z) + c
 iterations += 1
 pixels[i, j] = 1 - iterations * 0.02

gui = ti.GUI("Julia Set", res=(n * 2, n))

for i in range(1000000):
 paint(i * 0.03)
 gui.set_image(pixels)
 gui.show()
Life of a Taichi kernel

Kernel Registration (@ti.kernel)

Template Instantiation

Template Inst. Cache

Python AST Transform

Taichi AST Generation & Compile-Time Computation (static if, loop unroll, const fold...)

Taichi Frontend AST IR

AST Lowering

Type Checking

Taichi Hierarchical SSA IR

x64/ARM

Loop Vectorize

Optimizations

Reverse-Mode Autodiff

Optimizations

Auto-Parallelization (Offload)

(Sparse) Access Lowering

Access Optimizations

Executable Kernels

Data Structure Info (Python->C++)

Devices

x64/ARM CPUs

CUDA

Apple Metal

OpenGL Compute Shaders

AMDGPU

C source

JS/WASM
Overview

This talk serves as an introductory course on the syntax of the Taichi programming language.

- Advanced topics such as data layout specification, sparse data structures, and advanced differentiable programming will *not* be covered in this 1-hour course.

- Slides will be actively updated after the course to keep up with the latest Taichi system (v0.6.22).

- More details are available in the Taichi documentation (English & Simplified Chinese).

Note

Many features of Taichi are developed by the Taichi community. Clearly, I am not the only developer :-)

Table of Contents

1. Getting started
2. Data
3. Computation
4. Objective data-oriented programming
5. Meta-programming
6. Differentiable Programming
7. Debugging
8. Visualization
Taichi can be installed via `pip` on **64-bit** Python 3.6/3.7/3.8:

```bash
python3 -m pip install taichi
```

Notes

- Taichi supports Windows, Linux, and OS X.
- Taichi runs on both CPUs and GPUs (CUDA/OpenGL/Apple Metal).
- Build from scratch if your CPU is AArch64 or you use Python 3.9+.
Use `python3 -m taichi` or simply `ti` to start Taichi’s CLI.

The most important Taichi CLI command: `ti example`

- `ti example`: list all examples
- `ti example mpm99/sdf_renderer/autodiff_regression/...`: run an example
- `ti example -p/-P [example]`: show the code of the example

Taichi has 40+ minimal language examples. Playing with them is the easiest way to learn about this language (and to have fun).
Initialization

Always initialize Taichi with `ti.init()` before you do any Taichi operations. For example,

\[
\texttt{ti.init(arch=\texttt{ti.cuda})}
\]

The most useful argument: `arch`, i.e., the backend (architecture) to use

- `\texttt{ti.x64/arm/cuda/opengl/metal}`: stick to a certain backend.
- `\texttt{ti.cpu}` (default), automatically detects x64/arm CPUs.
- `\texttt{ti.gpu}`, try cuda/metal/opengl. If none is detected, Taichi falls back on CPUs.

Many other arguments will be introduced later in this course.
Table of Contents

1. Getting started
2. Data
3. Computation
4. Objective data-oriented programming
5. Meta-programming
6. Differentiable Programming
7. Debugging
8. Visualization
Data types

Taichi is statically and strongly typed. Supported types include

- Signed integers: \texttt{ti.i8/i16/i32/i64}
- Unsigned integers: \texttt{ti.u8/u16/u32/u64}
- Float-point numbers: \texttt{ti.f32/f64}

\texttt{ti.i32} and \texttt{ti.f32} are the most commonly used types in Taichi. Boolean values are represented by \texttt{ti.i32} for now.

Data type compatibility

The CPU and CUDA backends support all data types. Other backend may miss certain data type support due to backend API constraints. See the documentation for more details.
Taichi is a *data-oriented* programming language where **fields** are first-class citizens.

- Fields are essentially multi-dimensional arrays.
- An element of a field can be either a scalar (*ti.field*), a vector (*ti.Vector.field*), or a matrix (*ti.Matrix.field*).
- Field elements are *always* accessed via the `a[i, j, k]` syntax. (No pointers.)
- Access out-of-bound is undefined behavior in non-debug mode.
- *(Advanced) Fields can be spatially sparse*
Table of Contents

1. Getting started
2. Data
3. Computation
 - Objective data-oriented programming
4. Meta-programming
5. Differentiable Programming
6. Debugging
7. Visualization
Kernels

In Taichi, computation resides in kernels.

1. The language used in Taichi kernels is similar to Python.
2. The Taichi kernel language is compiled, statically-typed, lexically-scoped, parallel and differentiable.
3. Taichi kernels must be decorated with `@ti.kernel`.
4. Kernel arguments and return values must be type-hinted.

Examples

```python
@ti.kernel
def hello(i: ti.i32):
    a = 40
    print('Hello world!', a + i)

hello(2) # "Hello world! 42"
```

```python
@ti.kernel
def calc() -> ti.i32:
    s = 0
    for i in range(10):
        s += i
    return s # 45
```

15 / 52
Functions

Taichi functions (@ti.func) can be called by Taichi kernels and other Taichi functions. No type-hints needed for arguments and return values in @ti.func.

Examples

```python
@ti.func
def triple(x):
    return x * 3

@ti.kernel
def triple_array():
    for i in range(128):
        a[i] = triple(a[i])
```

Note

Taichi functions will be force-inlined. For now, recursion is not allowed. A Taichi function can contain at most one return statement.
Scalar math

Most Python math operators are supported in Taichi. E.g.,
\[a + b, \ a / b, \ a \ // \ b, \ a \ % \ b, \ldots \]

Math functions:

- `ti.sin(x)`
- `ti.cos(x)`
- `ti.asin(x)`
- `ti.acos(x)`
- `ti.atan2(y, x)`
- `ti.sqrt(x)`
- `ti.cast(x, data_type)`
- `ti.floor(x)`
- `ti.ceil(x)`
- `ti.inv(x)`
- `ti.tan(x)`
- `ti.tanh(x)`
- `ti.exp(x)`
- `ti.log(x)`
- `ti.random(data_type)`
- `abs(x)`
- `int(x)`
- `float(x)`
- `max(x, y, \ldots)`
- `min(x, y, \ldots)`
- `x ** y`

Taichi supports **chaining comparisons**. For example, \[a < b <= c != d. \]
Matrices and linear algebra

`ti.Matrix` is for small matrices (e.g. 3×3) only. If you have 64×64 matrices, please consider using a 2D scalar field.

`ti.Vector` is the same as `ti.Matrix`, except that it has only one column.

Common matrix operations:

- `A.transpose()`
- `A.inverse()`
- `A.trace()`
- `A.determinant(type)`
- `v.normalized()`
- `A.cast(type)`
- `A + B, A * B, A @ B, ...`

```python
R, S = ti.polar_decompose(A, ti.f32)
U, sigma, V = ti.svd(A, ti.f32)
# sigma is a diagonal *matrix*

ti.sin(A)/cos(A)...
# element-wise
u.dot(v) # returns a scalar
u.outer_product(v) # returns a matrix
```

Warning

Element-wise product $*$ and matrix product $@$ have different behaviors.
Parallel for-loops

Two types of for loops in Taichi:

- **Range-for loops**, which are no different from Python for loops, except that it will be parallelized when used at the outermost scope. Range-for loops can be nested.

- **Struct-for loops**, which iterates over (sparse) field elements. (More on this later.)

For loops at the outermost scope in a Taichi kernel are automatically parallelized.
Range-for loops

Examples

```python
@ti.kernel
def fill()
    for i in range(10): # Parallelized
        x[i] += i

    s = 0
    for j in range(5): # Serialized in each parallel thread
        s += j

    y[i] = s

@ti.kernel
def fill_3d()
    # Parallelized for all 3 <= i < 8, 1 <= j < 6, 0 <= k < 9
    for i, j, k in ti.ndrange((3, 8), (1, 6), 9):
        x[i, j, k] = i + j + k
```
Range-for loops

Note
It is the loop at the outermost scope that gets parallelized, not the outermost loop.

```python
@ti.kernel
def foo():
    for i in range(10):  # Parallelized
        ...

@ti.kernel
def bar(k: ti.i32):
    if k > 42:
        for i in range(10):  # Serial
            ...
```
Struct-for loops

Examples

```python
import taichi as ti

ti.init(arch=ti.gpu)

n = 320
pixels = ti.field(dtype=ti.f32, shape=(n * 2, n))

@ti.kernel
def paint(t: ti.f32):
    for i, j in pixels:  # Parallized over all pixels
        pixels[i, j] = i * 0.001 + j * 0.002 + t

paint(0.3)
```

The struct-for loops iterates over all the field coordinates, i.e. (0,0), (0,1), (0,2), ..., (0,319), (1,0), ..., (639,319).
Atomic operations

In Taichi, augmented assignments (e.g., \(x[i] += 1 \)) are automatically atomic.

Examples

When modifying global variables in parallel, make sure you use atomic operations. For example, to sum up all the elements in \(x \),

```python
@ti.kernel
def sum():
    for i in x:
        # Approach 1: Correct
        total[None] += x[i]

        # Approach 2: Correct
        ti.atomic_add(total[None], x[i])

        # Approach 3: Wrong result due to data races
        total[None] = total[None] + x[i]
```
Taichi-scope v.s. Python-scope

<table>
<thead>
<tr>
<th>Definition</th>
<th>Taichi-scope: Everything decorated with <code>ti.kernel</code> and <code>ti.func</code>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Python-scope: Code outside Taichi-scope.</td>
</tr>
<tr>
<td>Note</td>
<td>1. Code in Taichi-scope will be compiled by the Taichi compiler and run on parallel devices.</td>
</tr>
<tr>
<td></td>
<td>2. Code in Python-scope is simply Python code and will be executed by the Python interpreter.</td>
</tr>
</tbody>
</table>
Playing with fields in Taichi-scope

Of course, fields can be manipulated in Taichi-scope as well:

```python
import taichi as ti

@ti.kernel
def foo():
    a[3, 4] = 1
    print('a[3, 4] =', a[3, 4])
    # "a[3, 4] = 1.000000"

    b[2] = [6, 7, 8]
    print('b[0] =', b[0], ', b[2] =', b[2])
    # "b[0] = [6.000000, 7.000000, 8.000000] , b[2] = [6.000000, 7.000000, 8.000000]"

    C[2, 1][0, 1] = 1
    print('C[2, 1] =', C[2, 1])
    # C[2, 1] = [0.000000, 1.000000, 0.000000]

foo()
```
Phases of a Taichi program

1. Initialization: `ti.init(...)`
2. Field allocation: `ti.field`, `ti.Vector.field`, `ti.Matrix.field`
3. Computation (launch kernels, access fields in Python-scope)
4. Optional: restart the Taichi system (clear memory, destroy all variables and kernels): `ti.reset()`

Note

For now, after the first kernel launch or field access in Python-scope, no more field allocation is allowed.
import taichi as ti

```python
@ti.init(arch=ti.gpu)
n = 320
pixels = ti.field(dtype=ti.f32, shape=(n * 2, n))

def complex_sqr(z):
    return ti.Vector([z[0]**2 - z[1]**2, z[1] * z[0] * 2])

@ti.kernel
def paint(t: ti.f32):
    for i, j in pixels:  # Parallelized over all pixels
        c = ti.Vector([-0.8, ti.cos(t) * 0.2])
        z = ti.Vector([i / n - 1, j / n - 0.5]) * 2
        iterations = 0
        while z.norm() < 20 and iterations < 50:
            z = complex_sqr(z) + c
            iterations += 1
        pixels[i, j] = 1 - iterations * 0.02

gui = ti.GUI("Julia Set", res=(n * 2, n))

for i in range(1000000):
    paint(i * 0.03)
    gui.set_image(pixels)
    gui.show()
```
Table of Contents

1. Getting started
2. Data
3. Computation
4. **Objective data-oriented programming**
5. Meta-programming
6. Differentiable Programming
7. Debugging
8. Visualization
ODOP: Using classes in Taichi

- Taichi is a data-oriented programming (DOP) language...
- ... but simple DOP makes code modularization hard
- To improve code reusability, Taichi borrows some concepts from object-oriented programming (OOP)
- The hybrid scheme is called **objective data-oriented programming** (ODOP)
- Three important decorators
 - Use `@ti.data_oriented` to decorate your class
 - Use `@ti.kernel` to decorate class members functions that are Taichi kernels
 - Use `@ti.func` to decorate class members functions that are Taichi functions
- Development story (Chinese)
ODOP: An example

Demo: ti example odop_solar \[a = \frac{GMr}{||r||^3} \]

```python
import taichi as ti

@ti.data_oriented
class SolarSystem:
    def __init__(self, n, dt):
        self.n = n
        self.dt = dt
        self.x = ti.Vector.field(2, dtype=ti.f32, shape=n)
        self.v = ti.Vector.field(2, dtype=ti.f32, shape=n)
        self.center = ti.Vector.field(2, dtype=ti.f32, shape=())

    @staticmethod
    @ti.func
def random_around(center, radius):
        return center + radius * (ti.random() - 0.5) * 2

    @ti.kernel
    def initialize(self):
        for i in range(self.n):
            offset = ti.Vector([0.0, self.random_around(0.3, 0.15)])
            self.x[i] = self.center[None] + offset
            self.v[i] = [-offset[1], offset[0]]
            self.v[i] *= 1.5 / offset.norm()
```

```
ODOP: An example (continued)

```python
@ti.func
def gravity(self, pos):
offset = -(pos - self.center[None])
return offset / offset.norm()**3

@ti.kernel
def integrate(self):
 for i in range(self.n):
 self.v[i] += self.dt * self.gravity(self.x[i])
 self.x[i] += self.dt * self.v[i]

solar = SolarSystem(9, 0.0005)
solar.center[None] = [0.5, 0.5]
solar.initialize()

 gui = ti.GUI("Solar System", background_color=0x25A6D9)
while True:
 if gui.get_event():
 if gui.event.key == gui.SPACE and gui.event.type == gui.PRESS:
 solar.initialize()
 for i in range(10):
 solar.integrate()
 gui.circle([0.5, 0.5], radius=20, color=0x8C274C)
 gui.circles(solar.x.to_numpy(), radius=5, color=0xFFFFFF)
 gui.show()
```
Table of Contents

1. Getting started
2. Data
3. Computation
4. Objective data-oriented programming
5. Meta-programming
6. Differentiable Programming
7. Debugging
8. Visualization
Taichi provides metaprogramming tools. Metaprogramming can

- Allow users to pass almost anything (including Taichi fields) to Taichi kernels
- Improve run-time performance by moving run-time costs to compile time
- Achieve dimensionality independence (e.g. write 2D and 3D simulation code simultaneously.)
- Simplify the development of Taichi standard library

Taichi kernels are **lazily instantiated** and a lot of computation can happen at compile time. Every kernel in Taichi is a template kernel, even if it has no template arguments.
Templates

@ti.kernel
def copy(x: ti.template(), y: ti.template(), c: ti.f32):
    for i in x:
        y[i] = x[i] + c

Template instantiation

Kernel templates will be instantiated on the first call, and cached for later calls with the same template signature (see doc for more details).

Template argument takes (almost) everything

Feel free to pass fields, classes, functions, strings, and numerical values to arguments hinted as ti.template().
Template kernel instantiation

Be careful!

```python
import taichi as ti

@ti.init()

def hello(i: ti.template()):
 print(i)

for i in range(100):
 hello(i) # 100 different kernels will be created

@ti.kernel

def world(i: ti.i32):
 print(i)

for i in range(100):
 world(i) # The only instance will be reused
```
Dimensionality-independent programming

Examples

```python
@ti.kernel
def copy(x: ti.template(), y: ti.template()):
 for I in ti.grouped(y):
 x[I] = y[I]

@ti.kernel
def array_op(x: ti.template(), y: ti.template()):
 for I in ti.grouped(x):
 # I is a vector of size x.dim() and dtype i32
 y[I] = I[0] + I[1]
 # If x is 2D field, the above is equivalent to
 for i, j in x:
 y[i, j] = i + j
```

Application: write simulation code that works for both 2D & 3D.
Field-size reflection

The Taichi Programming Language
Yuanming Hu

Getting started
Data
Computation
Objective data-oriented programming
Meta-programming
Differentiable Programming
Debugging
Visualization

Fetch field dimensionality info as compile-time constants:

```python
import taichi as ti

ti.init()
field = ti.field(dtype=ti.f32, shape=(4, 8, 16, 32, 64))

@ti.kernel
def print_shape(x: ti.template()):
 ti.static_print(x.shape)
 for i in ti.static(range(len(x.shape))):
 print(x.shape[i])

print_shape(field)
```
Using compile-time evaluation will allow certain computations to happen when kernels are being instantiated. This saves the overhead of those computations at runtime. (C++17 equivalence: \texttt{if constexpr}.)

```python
enable_projection = True

@ti.kernel
def static():
 if ti.static(enable_projection): # No runtime overhead
 x[0] = 1
```
Use `ti.static(range(...))` to unroll the loops at compile time:

```python
import taichi as ti

ti.init()
x = ti.Vector.field(3, dtype=ti.i32, shape=16)

@ti.kernel
def fill():
 for i in x:
 for j in ti.static(range(3)):
 x[i][j] = j
 print(x[i])

fill()
```
Forced loop-unrolling

Why unroll the range-for loops?

- To optimize for performance.
- To loop over vector/matrix elements. Indices into Taichi vectors or matrices must be **compile-time constants**. Indices into Taichi fields can be run-time variables. For example, if \( x \) is a 1D field of 3D vectors, accessed as \( x[field\_index][matrix\_index] \). The first index can be a variable, yet the second must be a compile-time constant.
Taichi allows programmers to create aliases using `ti.static`. For example, 
\[
a = \texttt{ti.static(a\_field\_or\_kernel\_with\_very\_long\_name)}.
\]
This can sometimes improve readability. For example,

```python
@ti.kernel
def my_kernel():
 for i, j in field_a:
 field_b[i, j] = some_function(field_a[i, j]) + some_function(field_a[i + 1, j])
```

can be simplified into

```python
@ti.kernel
def my_kernel():
a, b, fun = ti.static(field_a, field_b, some_function)
for i,j in a:
 b[i,j] = fun(a[i,j]) + fun(a[i + 1,j])
```
# Table of Contents

1. Getting started
2. Data
3. Computation
4. Objective data-oriented programming
5. Meta-programming
6. Differentiable Programming
7. Debugging
8. Visualization
Differentiable Programming

Forward programs evaluate $f(x)$; backward (gradient) programs evaluate $\frac{\partial f(x)}{\partial x}$.

Taichi supports reverse-mode automatic differentiation (AutoDiff) that back-propagates gradients w.r.t. a scalar (loss) function $f(x)$.

Two ways to compute gradients:

1. Use Taichi’s tape (`ti.Tape(loss)`) for both forward and gradient evaluation.
2. Explicitly use gradient kernels for gradient evaluation with more controls.
Gradient-based optimization

\[
\min_x L(x) = \frac{1}{2} \sum_{i=0}^{n-1} (x_i - y_i)^2.
\]

1. Allocating fields with gradients:
   \[
   x = \text{ti.field}(\text{dtype=ti.f32, shape=n, needs_grad=True})
   \]

2. Defining loss function kernel(s):

   ```python
 @ti.kernel
def reduce():
 for i in range(n):
 L[None] += 0.5 * (x[i] - y[i])**2
   ```

3. Compute loss with \text{ti.Tape(loss=L): reduce}()

4. Gradient descent: \text{for i in x: x[i] -= x.grad[i] * 0.1}

**Demo:** \text{ti example autodiff_minimization}

**Another demo:** \text{ti example autodiff_regression}
Application 1: Forces from potential energy gradients

From the definition of potential energy:

\[ f_i = -\frac{\partial U(x)}{\partial x_i} \]

Manually deriving gradients is hard. Let’s use AutoDiff:

1. Allocate a 0D field to store the potential energy:
   ```
 potential = \text{ti.field(ti.f32, shape=())}.
   ```

2. Define forward kernels that computes potential energy from \( x[i] \).

3. In a \text{ti.Tape(loss=potential)}, call the forward kernels.

4. Force on each particle is \(-x.grad[i]\).
Application 2: Differentiating a whole physical process

10 Demos: DiffTaichi \((x_{t+1}, v_{t+1}, \ldots) = F(x_t, v_t, \ldots)\)

Pattern:

```python
with ti.Tape(loss=loss):
 for i in range(steps - 1):
 simulate(i)
```

Computational history

Always keep the whole computational history of time steps for end-to-end differentiation. I.e., instead of only allocating

```
ti.VectorField(3, dtype=ti.f32, shape=(num_particles))
```

that stores the latest particles, allocate for the whole simulation process

```
ti.VectorField(3, dtype=ti.f32, shape=(num_timesteps, num_particles))
```

Do not overwrite! (Use **checkpointing** to reduce memory consumption.)
# Table of Contents

1. Getting started
2. Data
3. Computation
4. Objective data-oriented programming
5. Meta-programming
6. Differentiable Programming
7. Debugging
8. Visualization
The Taichi Programming Language
Yuanming Hu

Getting started
Data
Computation
Objective data-oriented programming
Meta-programming
Differentiable Programming
Debugging
Visualization

Debug mode

`ti.init(debug=True, arch=ti.cpu)` initializes Taichi in debug mode, which enables bound checkers (CPU and CUDA). See the doc more on debug mode.

Examples

```python
import taichi as ti

Debug mode

Example usage of debug mode

ti.init(debug=True)

a = ti.field(ti.i32, shape=10)
b = ti.field(ti.i32, shape=10)

@ti.kernel
def shift():
 for i in range(10):
 a[i] = b[i + 1] # Runtime error (out-of-bound)
 assert i < 5 # Runtime assertion failure

shift()
```
The Taichi Programming Language

Yuanming Hu

Getting started

Data

Computation

Objective data-oriented programming

Meta-programming

Differentiable Programming

Debugging

Visualization
Visualize you results

**Visualizing 2D results**

Simply make use of Taichi’s GUI system. Useful functions:

- `gui = ti.GUI("Taichi MLS-MPM-128", res=512, background_color=0x112F41)`
- `gui.circle/gui.circles(x.to_numpy(), radius=1.5, color=colors.to_numpy())`
- `gui.line/triangle/set_image/show/... [doc]`

**Visualizing 3D results**

Exporting 3D particles and meshes using `ti.PLYWriter [doc]`

**Demo:** `ti example export_ply/export_mesh`

Use Houdini/Blender to view (and render) your 3D results.
Making a video

Make an mp4 video out of your 2D frames

1. Use `ti.GUI.show [doc]` to save the screenshots. Or simply use `ti.imwrite(img, filename) [doc].`

2. `ti video` creates `video.mp4` using frames under the current folder. To specify frame rate, use `ti video -f 24` or `ti video -f 60`.

3. Convert mp4 to gif and share it online: `ti gif -i input.mp4`.

Make sure ffmpeg works!

- Linux and OS X: with high probability you already have ffmpeg.
- Windows: install ffmpeg on your own [doc].

More information: [Documentation] Export your results.
Thank you!

Next steps

More details: Please check out the Taichi documentation
Found a bug in Taichi? Raise an issue
Join us: Contribution Guidelines

Acknowledgements

Yuanming Hu is grateful to his Ph.D. advisors Prof. Frédo Durand and Prof. Bill Freeman at MIT, and his internship mentor Dr. Vinod Grover at NVIDIA, for supporting the development of Taichi.
Taichi is a collaborative project. We appreciate everyone's contributions.

SIGGRAPH 2020 Taichi Course Online Q&A Session

Time: Friday, 28 August 2020 9:00am - 9:30am (Pacific Time)
Please come chat with us! Questions are welcome :-)

Thank you!