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Spatial Sparsity:  
Regions of interest only occupy a small fraction of 

the bounding volume.

Region of Interest
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VDB [Museth 2013] 

Shallow Multi-Level Sparse Voxel Grids



SPGrid

[Setaluri, Aanjaneya, Bauer, and Sifakis, SIGGRAPH Asia 2014] 
SPGrid: A sparse paged grid structure applied to adaptive smoke simulation

Even shallower sparse grid system 
• Virtual Memory 

• Morton Coding 

• Bitmasks
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Essential Computation
Data Structure Overhead

In reality…

Hash table lookup: 10s of clock cycles 
Indirection: cache/TLB misses 
Node allocation: locks, atomics, barriers 
Branching: misprediction / warp divergence 
…

Low-level engineering reduces data 
structure overhead, but harms 
productivity and couples algorithms 
and data structures, making it difficult to 
explore different data structure designs 
and find the optimal one.
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Sparse data structure overhead can be 
100x higher than essential computation

Data structure access: 
๏ 50 clock cycles / element 

Simple Stencil Computation: 
๏ 0.5 clock cycle / element

Fun fact: without low-level engineering, dense data 
structures are often faster for problems with >10% sparsity
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Sparse Data Structure

Hash table access

Array addressing

Reducing redundant  data access is the key to high-performance 
spatially sparse computation!
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3. Do low-level engineering to optimize for performance 
• Code is complex and coupled with the data structure library



Traditional Sparse Computation Workflow

1. Choose a sparse data structure library 

2. Implement the algorithm on that sparse data structure  

3. Do low-level engineering to optimize for performance 
• Code is complex and coupled with the data structure library
• “Oh no, this data structure isn’t really optimal for this algorithm”

start over
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Ideal Sparse Computing Workflow

1. Implement the algorithm as if all grids are dense 

2. Describe your data structure 

3. The compiler optimizes performance 
• Benchmark performance, and try different data structures

Related work: split languages, 
e.g., Halide [Ragan-Kelley, Adams, Paris, Levoy, Amarasinghe, Durand. SIGGRAPH 2012]
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High-Performance CPU/GPU Kernels 
Ours v.s. State-of-the-art: 

MLS-MPM     13x shorter code, 1.2x faster 
FEM Kernel    13x shorter code, 14.5x faster  
MGPCG          7x shorter code, 1.9x faster 
Sparse CNN    9x shorter code, 13x faster2D Laplace operator

2) Imperative computation 
language Runtime System 

5) Auto parallelization, 
memory management, …

10x shorter code, 4.55x faster



Defining Computation

• Program on sparse data structures as if they are dense; 
• Parallel for-loops (Single-Program-Multiple-Data, like CUDA/ispc); 
• Loop over only active elements in the sparse data structure; 
• Complex control flows (e.g. If, While) supported.

Taichi Kernel

Finite Difference Stencil
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Describing Data Structures

VDB [Museth 2013] SPGrid [Setaluri et al. 2014]

“SPVDB”

Structural Nodes Node Decorators



Bounded sparse grid structure 
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Unbounded sparse grid structure 



Unbounded sparse grid structure 



based on computation and data structure info

Access Simplification



Access Simplification

Root2leaf (end2end) data access

micro-access instructions

Simplified micro-access instructions

Access lowering

“Common subexpression elimination”



Access Simplification

More optimizations: 
• shared memory utilization on GPUs; 
• avoid unnecessary activation checks; 
• better vectorized loads on CPUs; 
• …

Removing redundant data structure traversals

3.02x faster



Results 
10.0x shorter code 

4.55x higher performance

High-Performance CPU/GPU Kernels 
Ours v.s. State-of-the-art: 

MLS-MPM     13x shorter code, 1.2x faster 
FEM Kernel    13x shorter code, 14.5x faster  
MGPCG          7x shorter code, 1.9x faster 
Sparse CNN    9x shorter code, 13x faster
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Benchmarks: MLS-MPM

Reproduce: ti mpm_benchmark particle_soa=[true/false] initial_shuffle=[true/false]

AOS much faster than SOA for random access! 
No sorting needed.
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Reproduce: ti mpm_benchmark use_cache=[true/false]

Benchmarks: MLS-MPM 
The use of scratch pad memory [NVIDIA shared memory]

2-3x faster using 
shared memory 

Index analysis for 
scratchpad memory 

size inference

Group particles into blocks 
& scatter/gather



Benchmarks: MLS-MPM

Reproduce: ti mpm_benchmark particle_soa=[true/false] initial_shuffle=[true/false]

Compared with baseline [Gao et al.]: 
[GPU] 1.2x faster 
13x shorter code
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Benchmarks: FEM Kernel

Patterns: Stencils with very high arithmetic intensity (compute bound)

8 elements 8 elements

3 channels 3 channels

3x8x8x3x2=1152 FLOPs/vertex



Benchmarks: FEM Kernel

4x4-Blocked 
Sparse Grid



Benchmarks: FEM Kernel

5-Point Stencil 
(Scalar) 

(Simplified: actual 
stencil is much larger)



Benchmarks: FEM Kernel

5-Point Stencil 
(4-wide Vectorized) 

Taichi compiler merges 
4 addressing into 

1, and then do a vectorized load 
(more details later)
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(4-wide Vectorized)



Benchmarks: FEM Kernel

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]



Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]

Without access lowering, 
the backend compiler 

(gcc/clang/nvcc) 
fails to discover 

potential vectorized loads 
and reduce data access 

Benchmarks: FEM Kernel



Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]

Benchmarks: FEM Kernel

AOS is really bad 
in this case since 

1) no vectorized ld/st 
2) low cacheline util.



Benchmarks: FEM Kernel

Compared with baseline: 
[Vectorized CPU] 2x faster 

 [GPU] 14.5x faster 
13x shorter code 

Baseline: (handwritten AVX2) 
Liu, Hu, Zhu, Matusik, and Sifakis: 

Narrow-band Topology Optimization 
on a Sparsely Populated Grid

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]



Vectorized FEM Access Optimization

1 2 3 4

for i in range(0, n, step 4): 
  %1 = load voxel 1 from root 
  %2 = load voxel 2 from root 
  %3 = load voxel 3 from root 
  %4 = load voxel 4 from root 
  %9 = make_vector(%1,%2,%3,%4)

Initial IR



1 2 3 4

for i in range(0, n, step 4): 
  %1 = get block for voxel 1 
  %2 = get voxel 1 from %1 
  %3 = get block for voxel 2 
  %4 = get voxel 2 from %3 
  %5 = get block for voxel 3 
  %6 = get voxel 3 from %5 
  %7 = get block for voxel 4 
  %8 = get voxel 4 from %7 
  %9 = make_vector(%2,%4,%6,%8)

After access lowering:

Vectorized FEM Access Optimization



1 2 3 4

for i in range(0, n, step 4): 
  %1 = get block for voxel i+0 
  %2 = get voxel i+0 from %1 
  %3 = get block for voxel i+1 
  %4 = get voxel i+1 from %3 
  %5 = get block for voxel i+2 
  %6 = get voxel i+2 from %5 
  %7 = get block for voxel i+3 
  %8 = get voxel i+3 from %7 
  %9 = make_vector(%2,%4,%6,%8)

Index analysis

Vectorized FEM Access Optimization



1 2 3 4

for i in range(0, n, step 4): 
  %1 = get block (i+0)/16 
  %2 = get voxel i+0 from %1 
  %3 = get block (i+1)/16 
  %4 = get voxel i+1 from %3 
  %5 = get block (i+2)/16 
  %6 = get voxel i+2 from %5 
  %7 = get block (i+3)/16 
  %8 = get voxel i+3 from %7 
  %9 = make_vector(%2,%4,%6,%8)

With data structure info (block size=16)

Vectorized FEM Access Optimization



1 2 3 4

for i in range(0, n, step 4): 
  %1 = get block (i+0)/16 
  %2 = get voxel i+0 from %1 
  %3 = get block (i+0)/16 
  %4 = get voxel i+1 from %3 
  %5 = get block (i+0)/16 
  %6 = get voxel i+2 from %5 
  %7 = get block (i+0)/16 
  %8 = get voxel i+3 from %7 
  %9 = make_vector(%2,%4,%6,%8)

Index analysis (i % 4 == 0) & 
and integer division property:

Vectorized FEM Access Optimization



1 2 3 4

for i in range(0, n, step 4): 
  %1 = get block (i+0)/16 
  %2 = get voxel i+0 from %1 
  %4 = get voxel i+1 from %1 
  %6 = get voxel i+2 from %1 
  %8 = get voxel i+3 from %1 
  %9 = make_vector(%2,%4,%6,%8)

Index analysis (i % 4 == 0) & simplification

Vectorized FEM Access Optimization



for i in range(0, n, step 4): 
  %1 = get block i/16 
  %2 = get voxel i+0 within %1 
  %3 = get 1st voxel right to %2  
  %4 = get 2nd voxel right to %2 
  %5 = get 3rd voxel right to %2 
  %9 = make_vector(%2,%3,%4,%5)

i+0 i+1 i+2 i+3

Index analysis + data structure info

Vectorized FEM Access Optimization



for i in range(0, n, step 4): 
  %1 = get block i/16 
  %2 = get voxel i within %1 
  %3 = vector_load(%2, width=4)

i+0 i+1 i+2 i+3

Index analysis + data structure info

Vectorized FEM Access Optimization



Reasons for Performance



Why can’t traditional compilers do the 
optimizations?

1) Index analysis 
2) Instruction granularity 
3) Data access semantics



The Granularity Spectrum

FinerCoarser

LLVM IR Machine codeEnd2end access Level-wise Access Taichi IR

x[i, j]
access1(i,j) 
access2(i,j)



FinerCoarser

LLVM IR Machine codeEnd2end access Level-wise Access Taichi IR

Analysis Difficulty
Hidden Optimization 

Opportunities



Data Access Semantics
✦ (Seemingly trivial) assumptions that enables compiler 

optimization: 
๏ No pointer aliasing: a[x, y] and b[i, j] never overlaps if a != b 
๏ All memory accesses are done through sparse_grid[indices] 
๏ The only way data structures get modified, is through write 

accesses of form sparse_grid[indices] 
๏ Read access does not modify anything 
‣ No memory allocation 
‣ No exception if out of ranges (element does not exist)



Performance

Pr
od

uc
tiv

ity

low-level 
interface

high-level 
interface

data structure library + 
general-purpose compiler



Performance

Pr
od

uc
tiv

ity

low-level 
interface

high-level 
interface

data structure library + 
general-purpose compiler



2) abstraction-specific 
compiler optimization

1) data structure 
abstraction
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3) algorithm 
data structure 

decoupling

Taichi: 
10.0x shorter code 
4.55x higher performance2) abstraction-specific 

compiler optimization

1) data structure 
abstraction

Performance
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low-level 
interface

high-level 
interface

data structure library + 
general-purpose compiler
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Differentiable Programming for Physical Simulation

End2end optimization of neural network controllers with gradient descent



(Advertisement) 

DiffTaichi: 
Differentiable Programming for Physical Simulation
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The End
Source code: https://github.com/yuanming-hu/taichi 

pip3 install taichi-nightly 
All performance numbers from our system are 

reproducible (commit dc162e11) with a single command.

Thank you!

https://github.com/yuanming-hu/taichi

