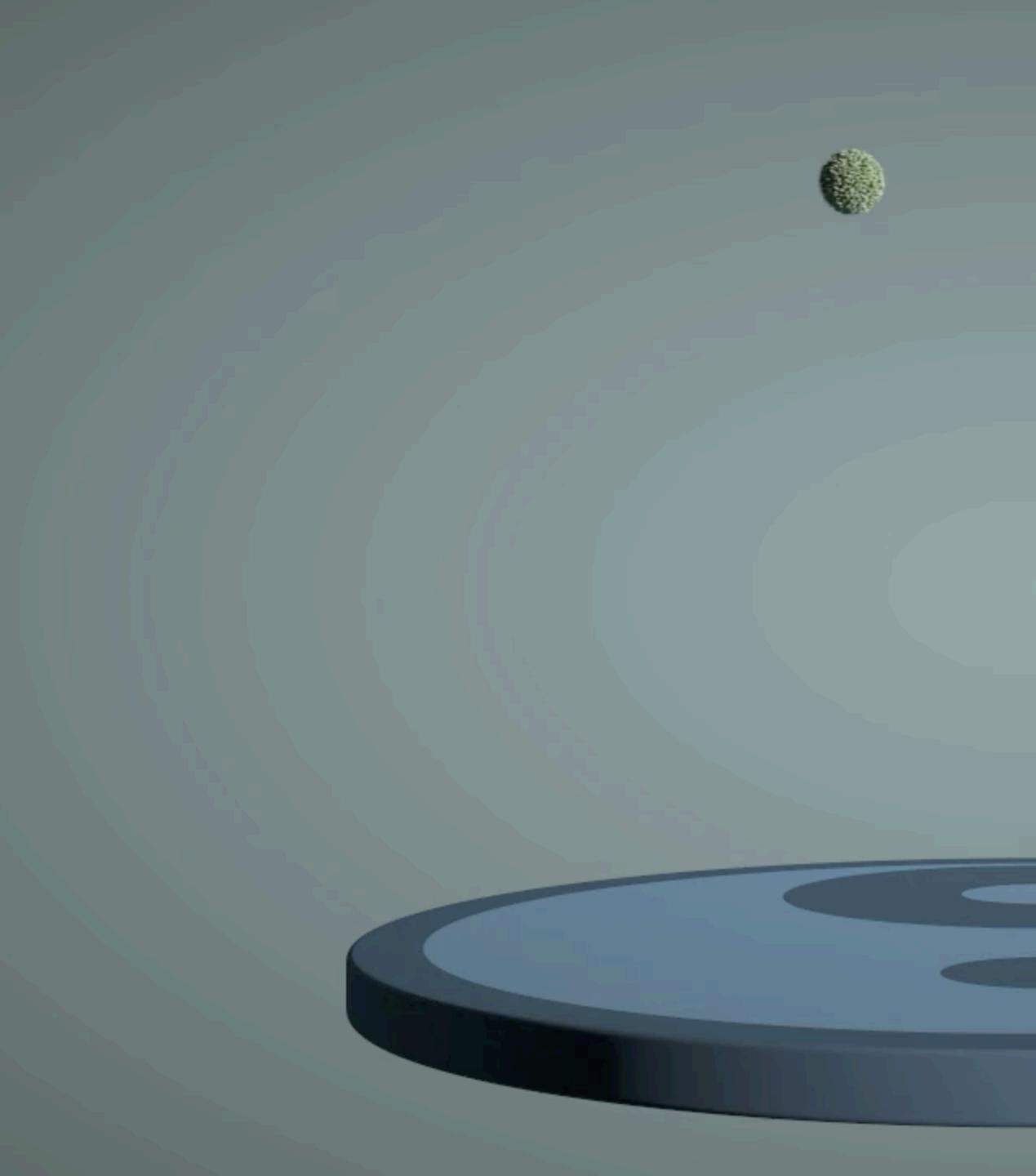


High-Performance Computation on **Spatially Sparse Data Structures**

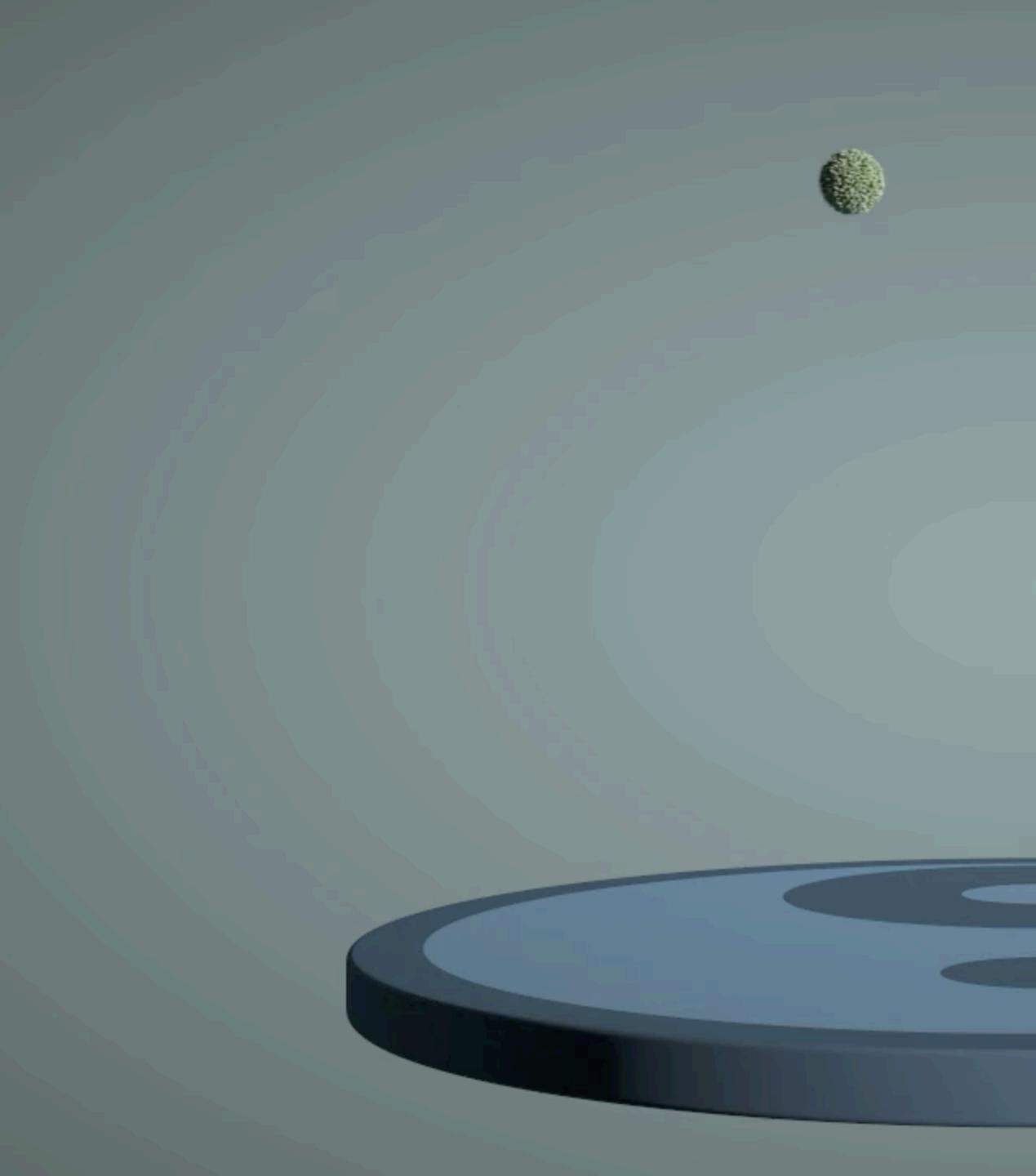
Yuanming Hu¹ Tzu-Mao Li² Luke Anderson¹ Jonathan Ragan-Kelley² Fredo Durand¹

¹MIT CSAIL ²UC Berkeley

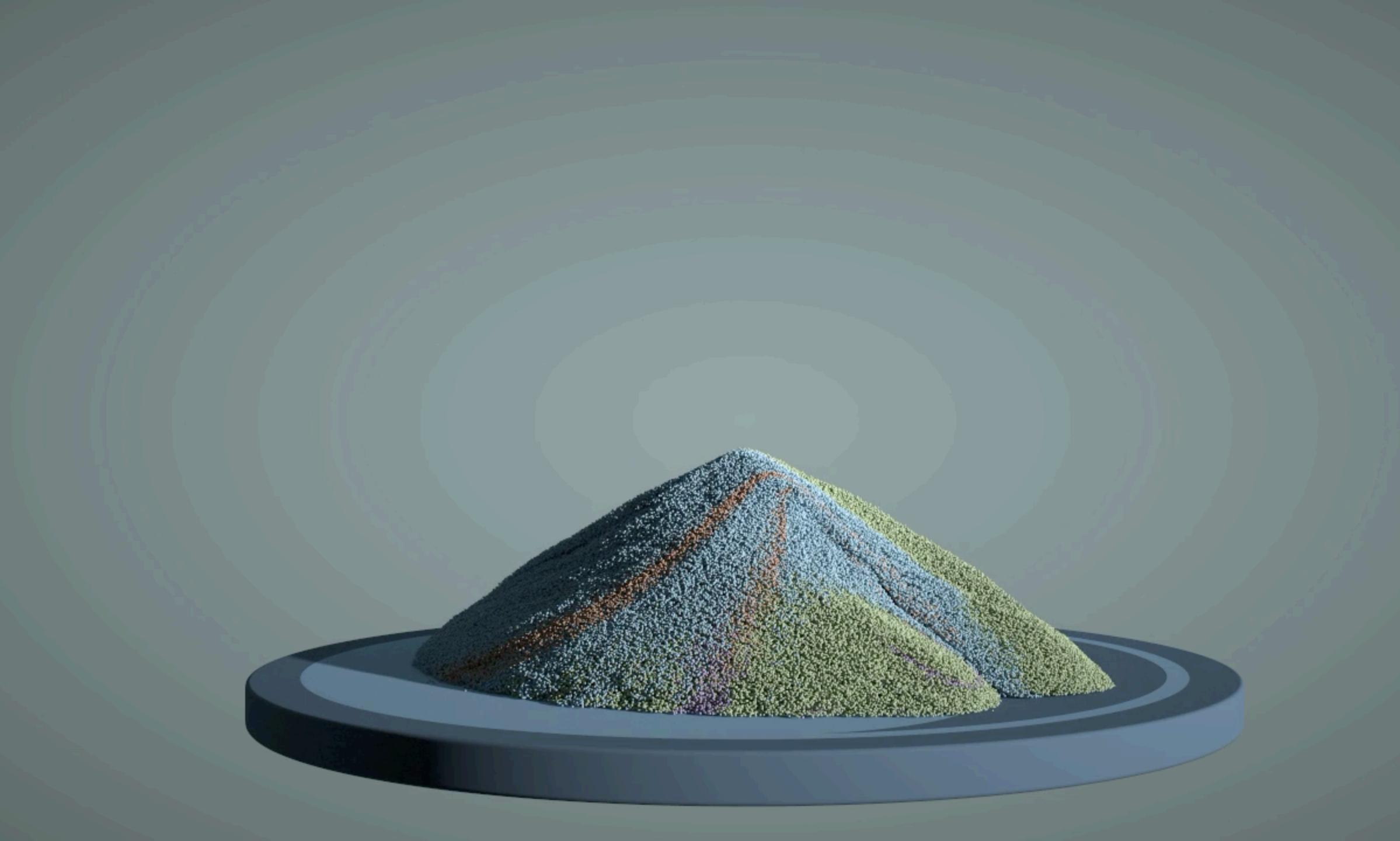
Contended of the second sec Programming Language

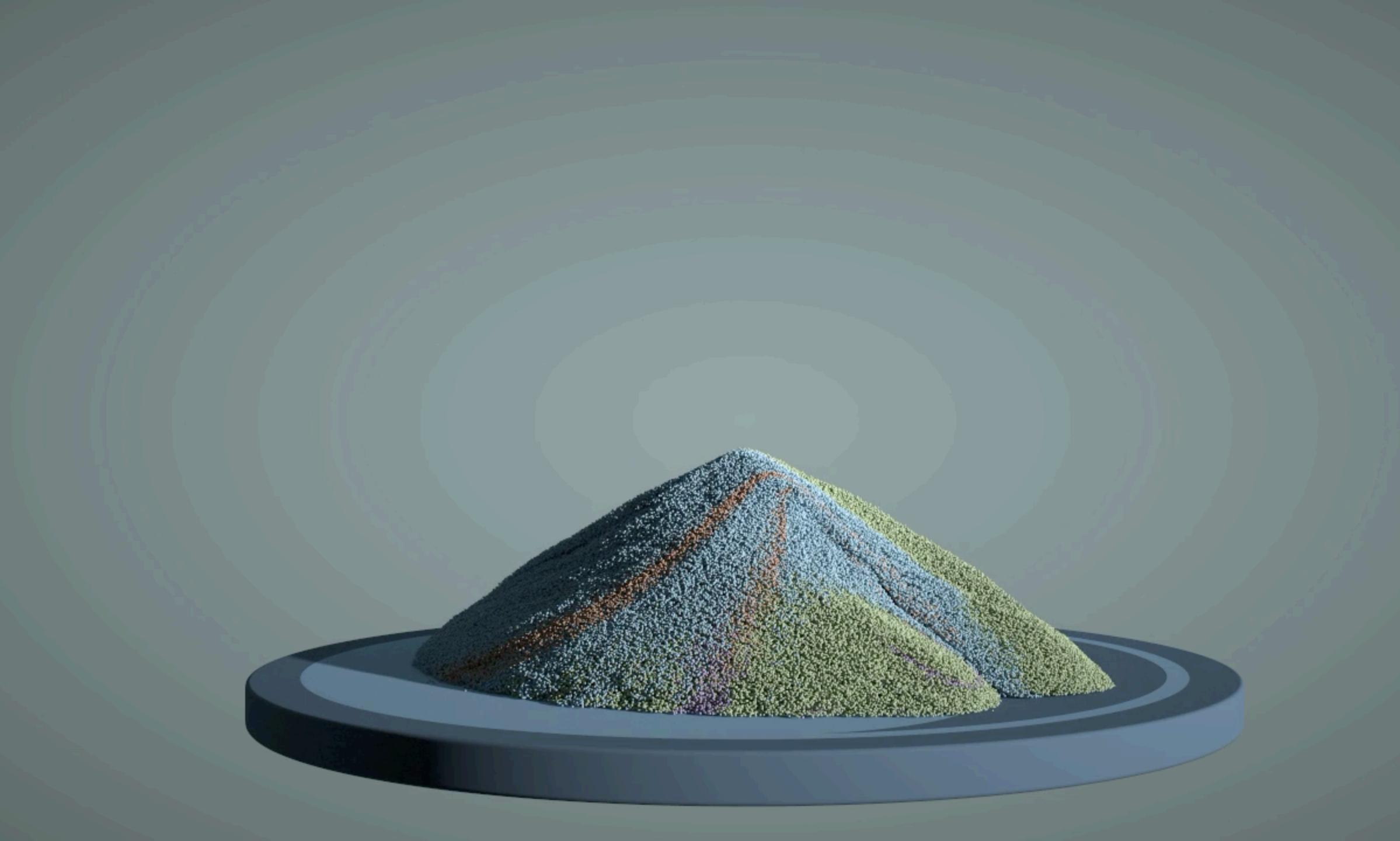


3 million particles simulated with MLS-MPM; rendered with path tracing. Using programs written in Taichi.

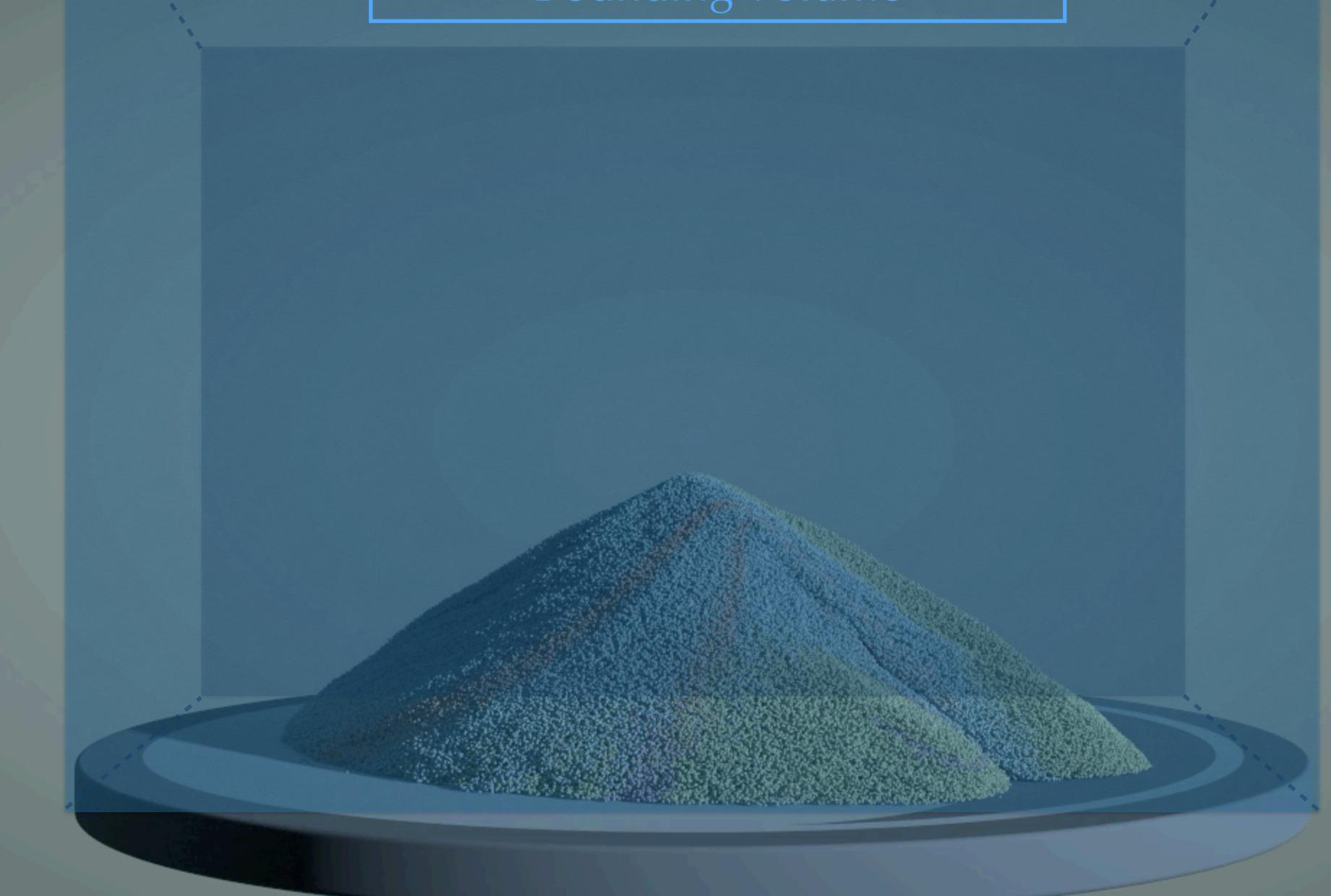


3 million particles simulated with MLS-MPM; rendered with path tracing. Using programs written in Taichi.





Bounding Volume

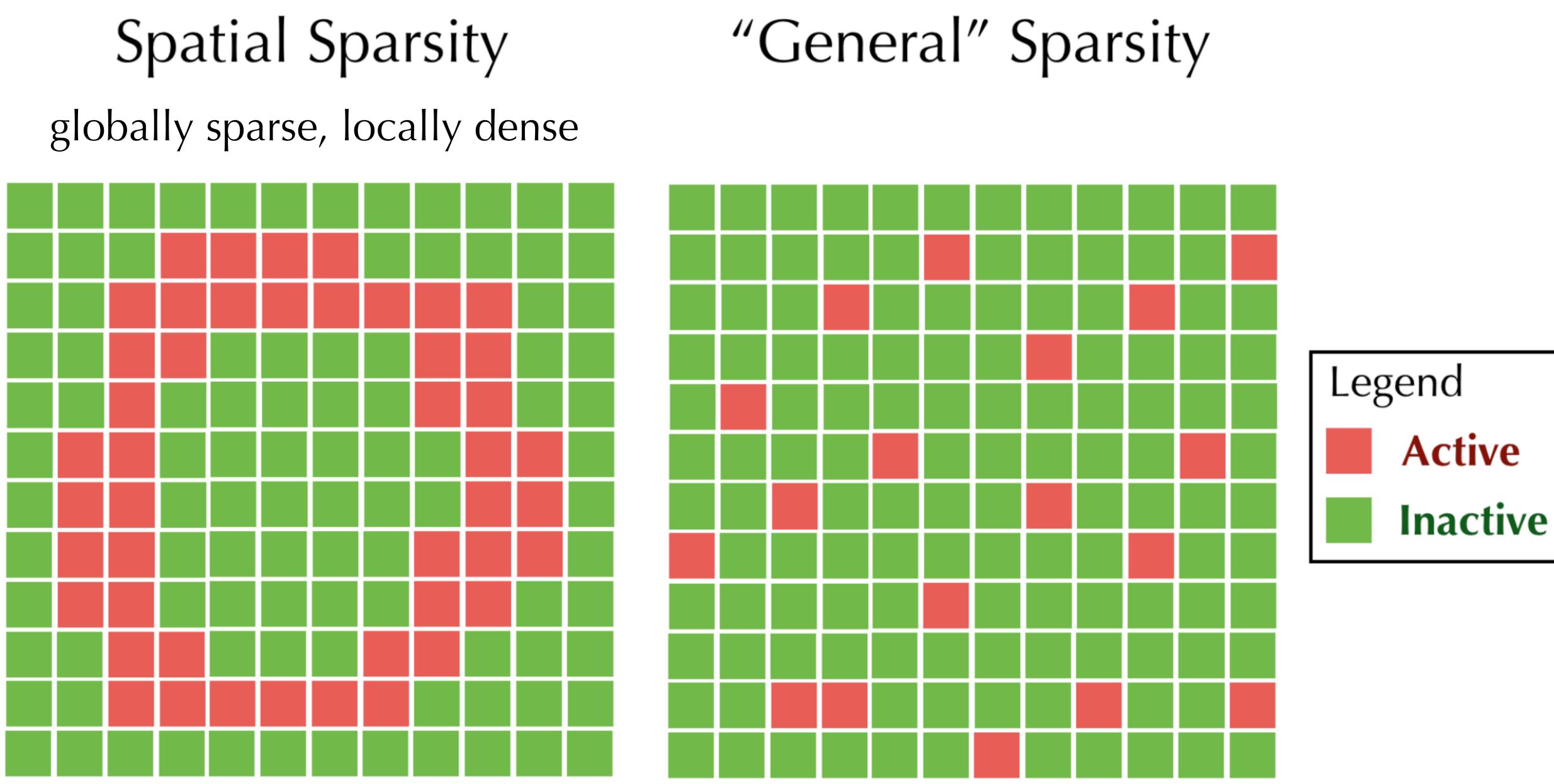


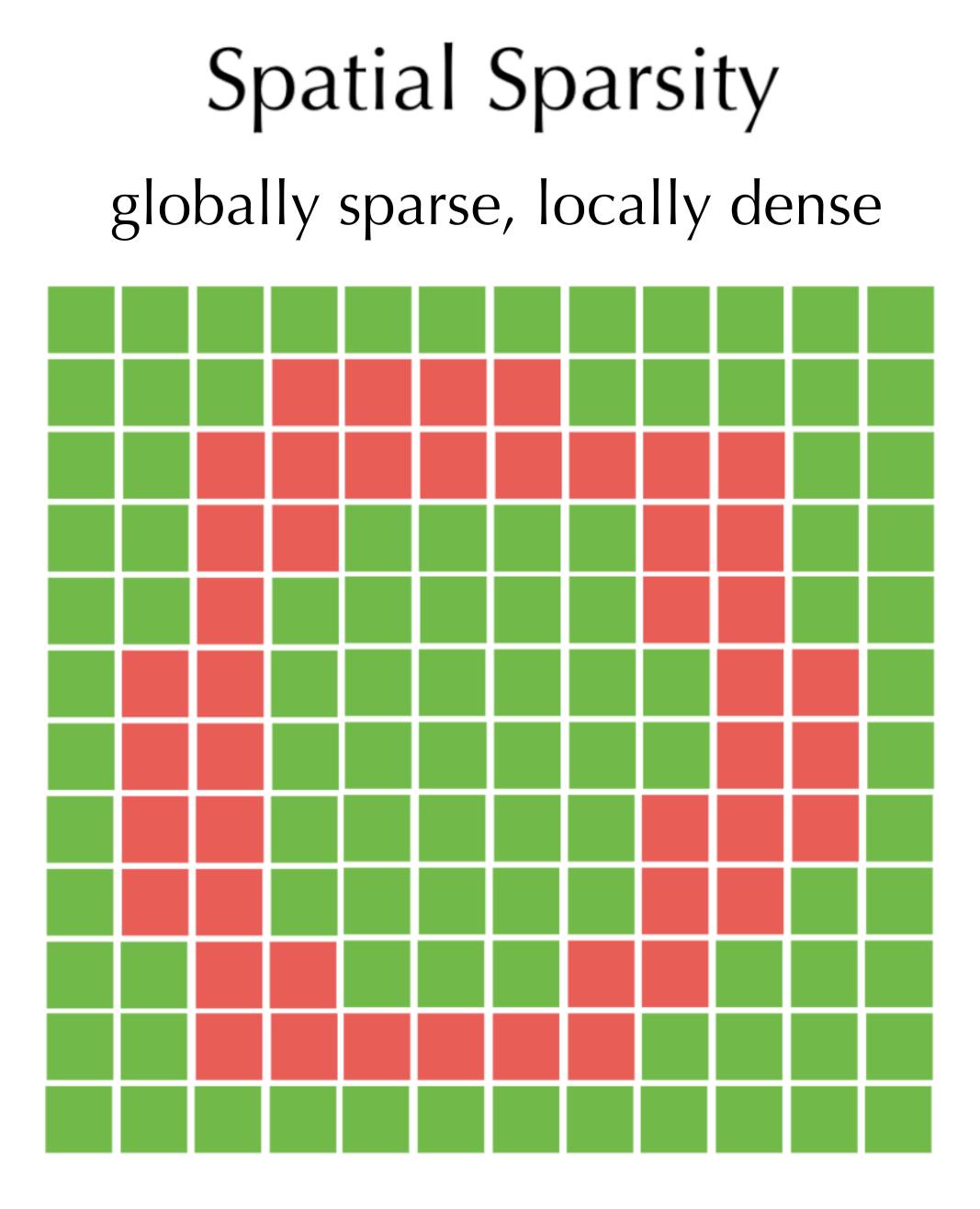
Bounding Volume

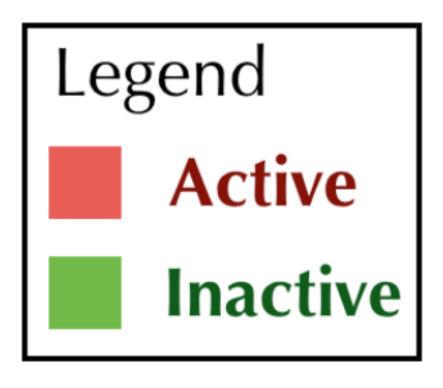
Region of Interest

Bounding Volume

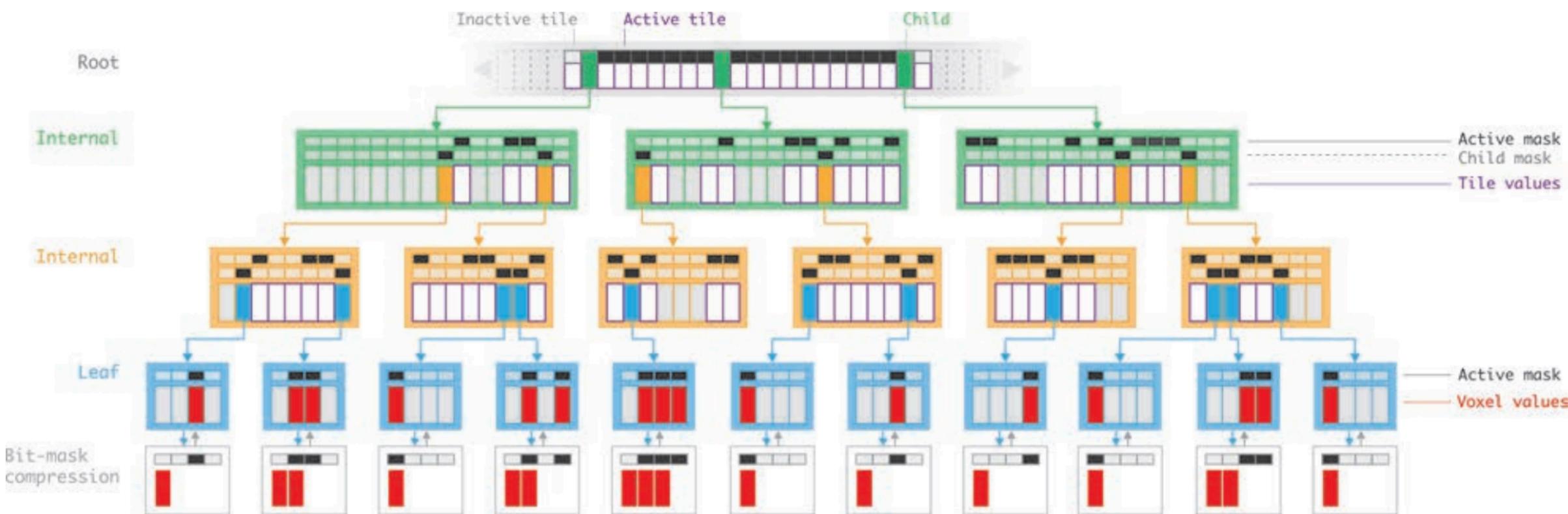
Spatial Sparsity: Regions of interest only occupy a small fraction of the bounding volume.



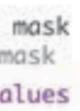




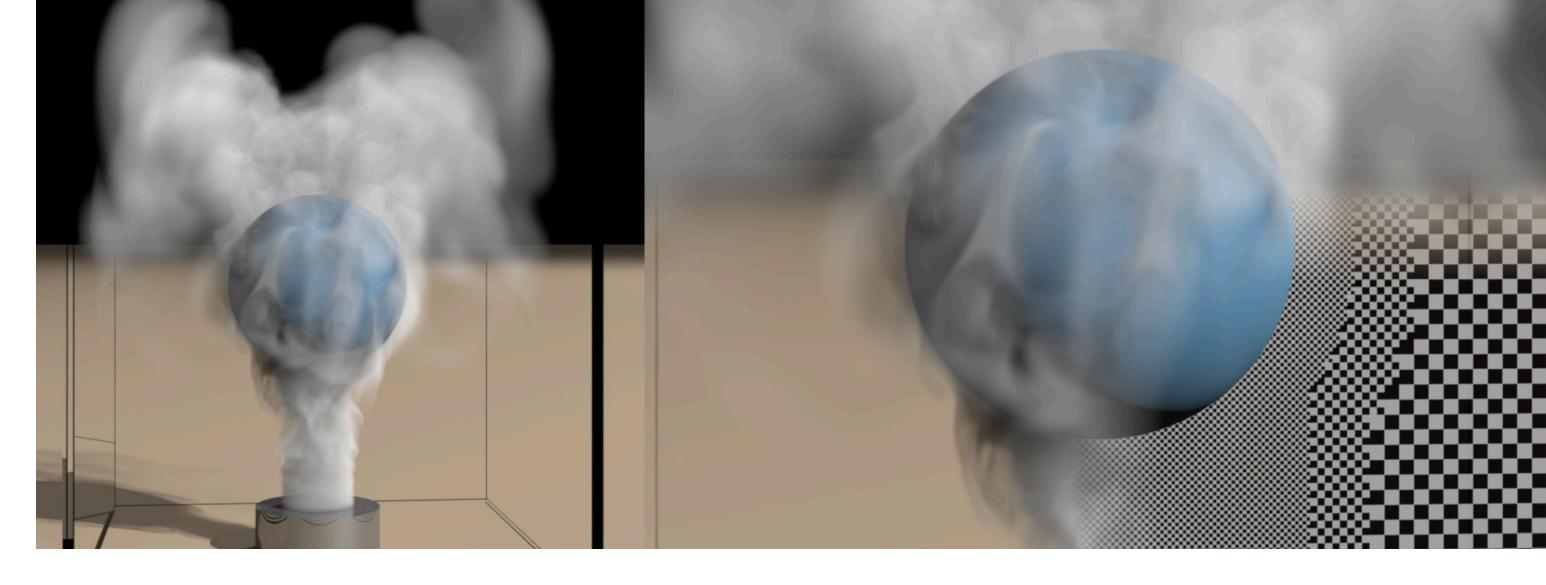
VDB [Museth 2013]



Shallow Multi-Level Sparse Voxel Grids



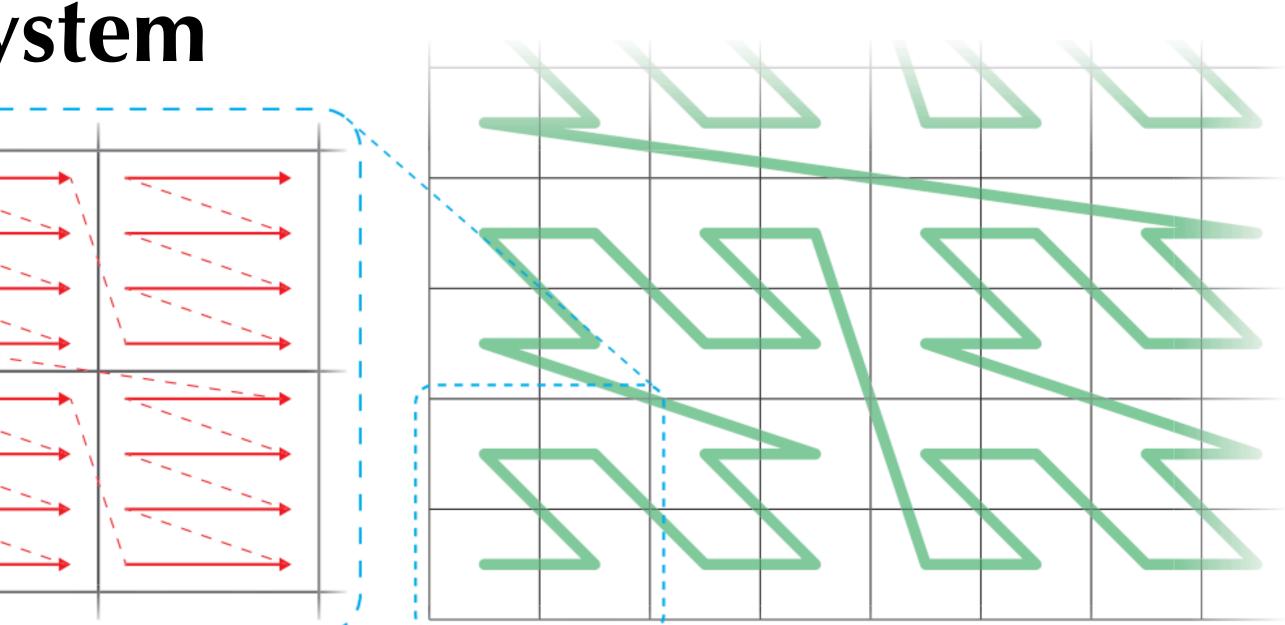
SPGrid



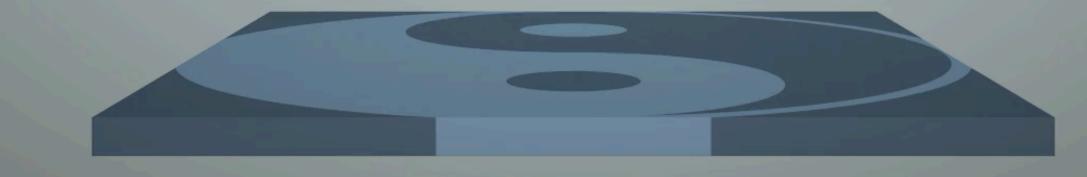
Even shallower sparse grid system

- Virtual Memory
- Morton Coding
- Bitmasks

[Setaluri, Aanjaneya, Bauer, and Sifakis, SIGGRAPH Asia 2014] SPGrid: A sparse paged grid structure applied to adaptive smoke simulation

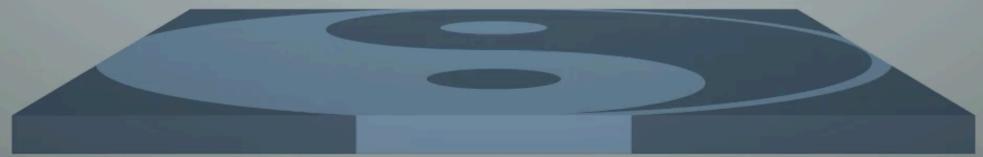


Particles

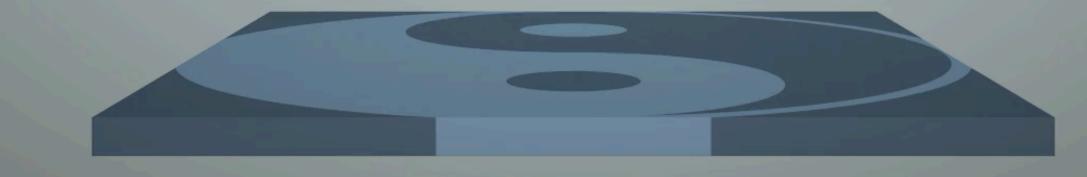


0

1x1x1

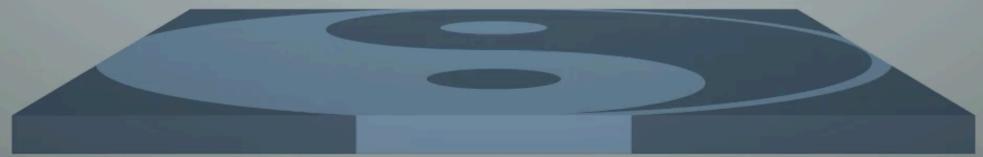


Particles



0

1x1x1



Using Sparse Data Structures is Hard

Boundary Conditions

Maintaining Topology

Parallelization & Load Balancing

Memory Management

Data Structure Overhead

Using Sparse Data Structures is Hard

Boundary Conditions

Maintaining Topology

Parallelization & Load Balancing

Memory Management

Data Structure Overhead

10%

Essential Computation Data Structure Overhead

90%

90%

Essential Computation Data Structure Overhead

In reality...

99%

1 %

In reality...

99%

1 %

In reality...

1%

99%

In reality...

Hash table lookup: 10s of clock cycles **Indirection:** cache/TLB misses Node allocation: locks, atomics, barriers **Branching:** misprediction / warp divergence

• • •

1 %

99%

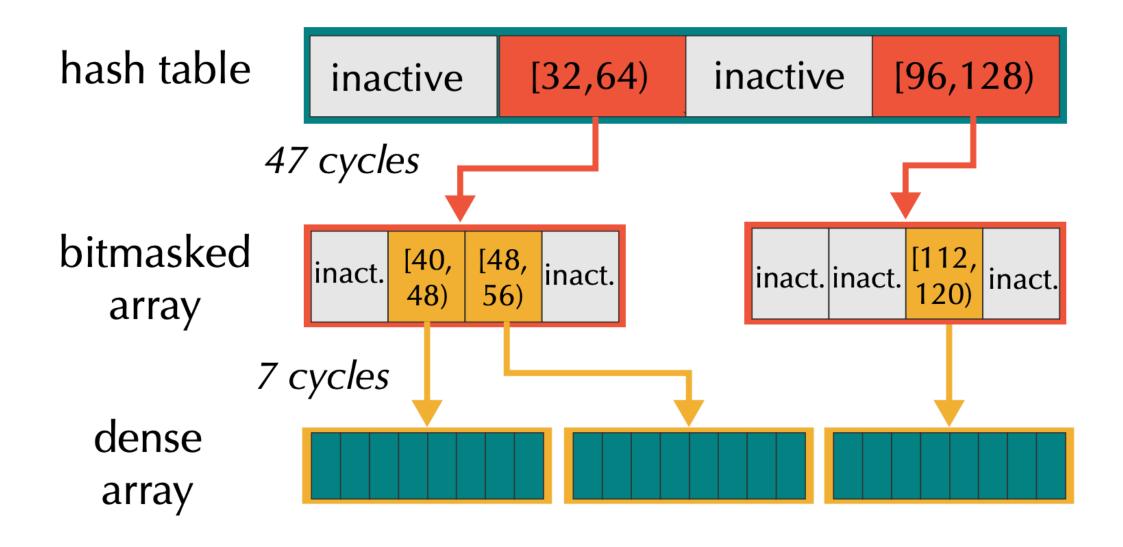
In reality...

Hash table lookup: 10s of clock cycles **Indirection:** cache/TLB misses Node allocation: locks, atomics, barriers **Branching:** misprediction / warp divergence

• • •

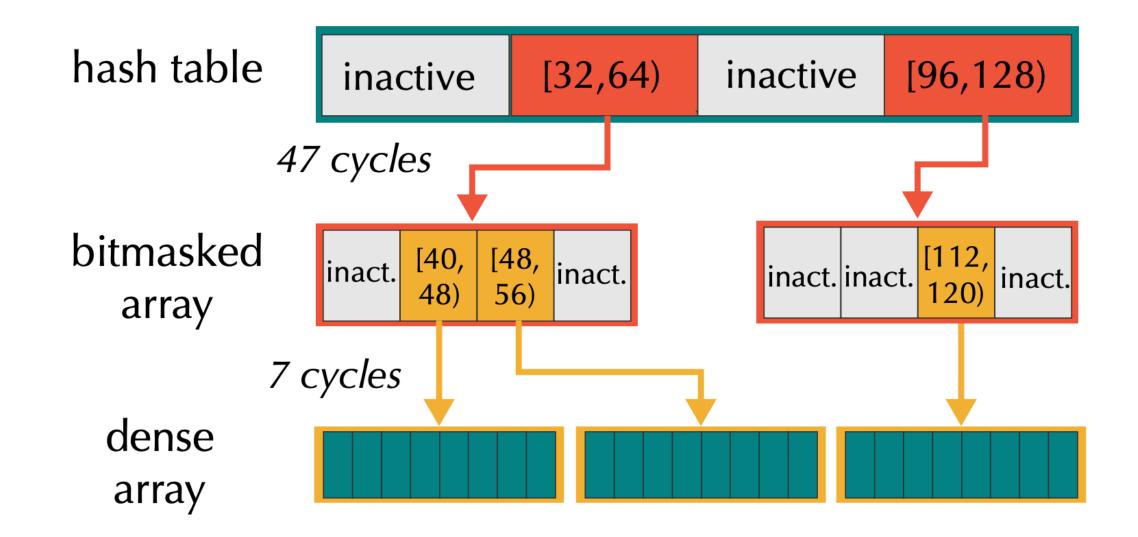
Low-level engineering reduces data structure overhead, but harms productivity and couples algorithms and data structures, making it difficult to explore different data structure designs and find the optimal one.

Data structure access: 50 clock cycles / element Simple Stencil Computation: 0.5 clock cycle / element



Data structure access: 50 clock cycles / element Simple Stencil Computation: 0.5 clock cycle / element

Sparse data structure overhead can be **100x** higher than essential computation

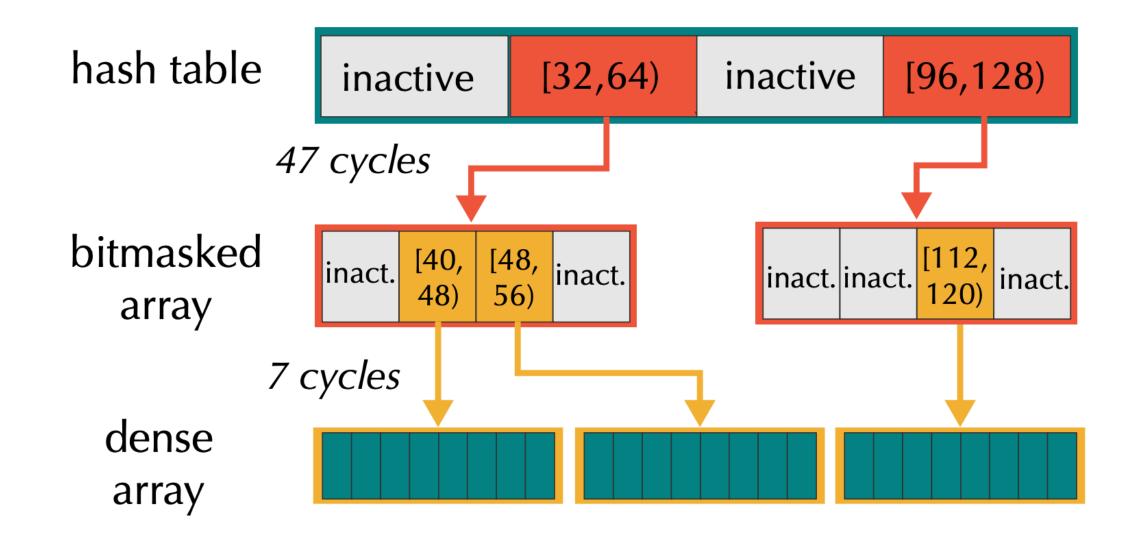


Data structure access: • 50 clock cycles / element **Simple Stencil Computation:** 0.5 clock cycle / element

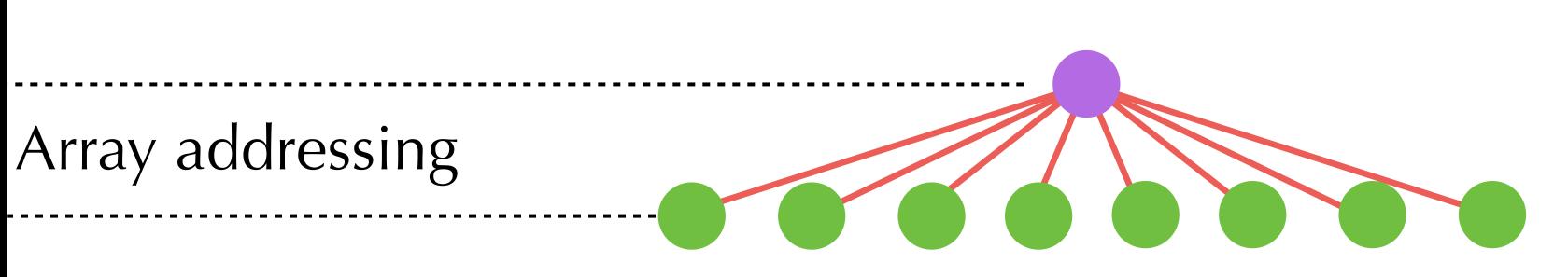
Sparse data structure overhead can be

Fun fact: without low-level engineering, dense data structures are often faster for problems with >10% sparsity

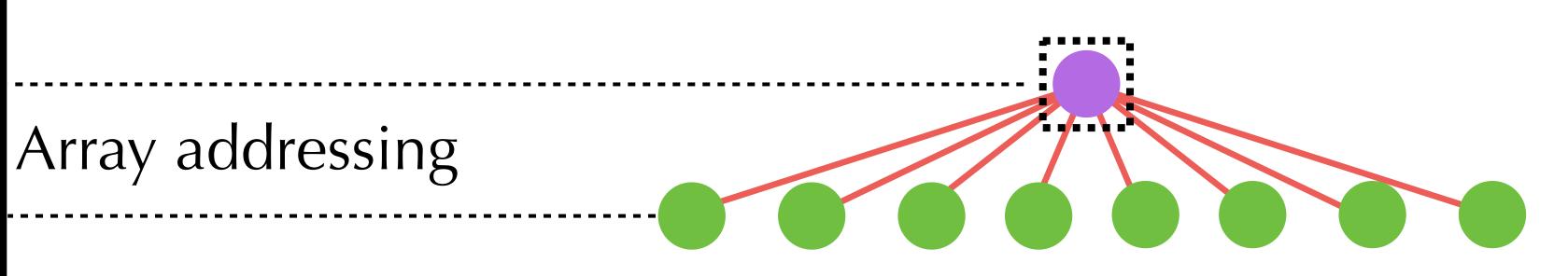
Sparse Data Structure



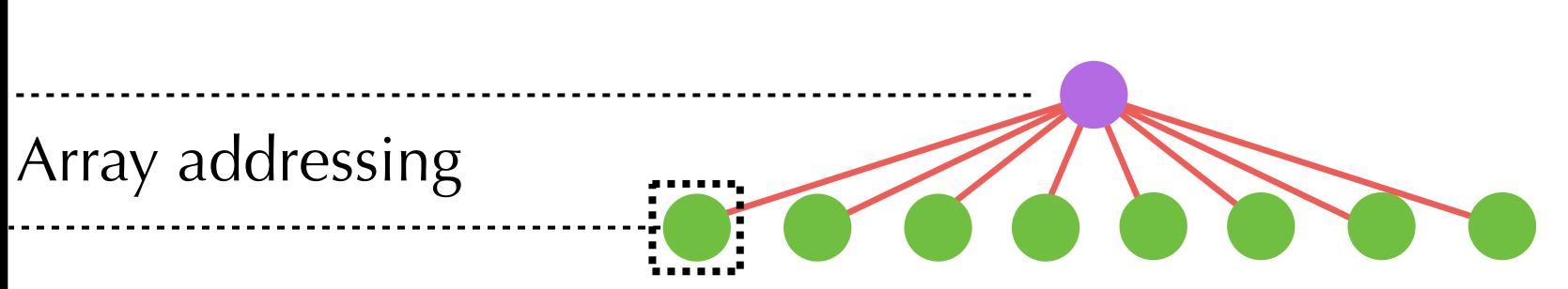
100x higher than essential computation



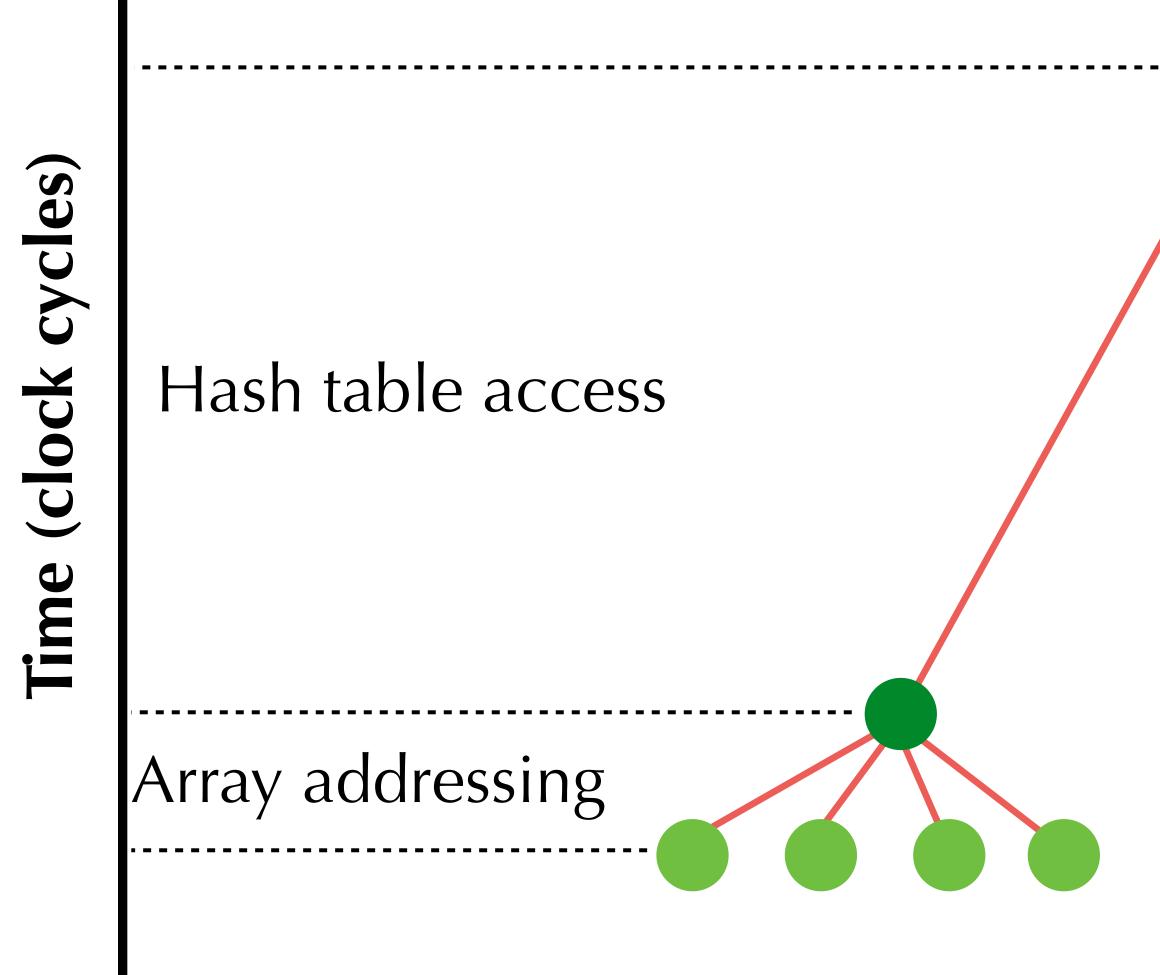
Dense Data Structure

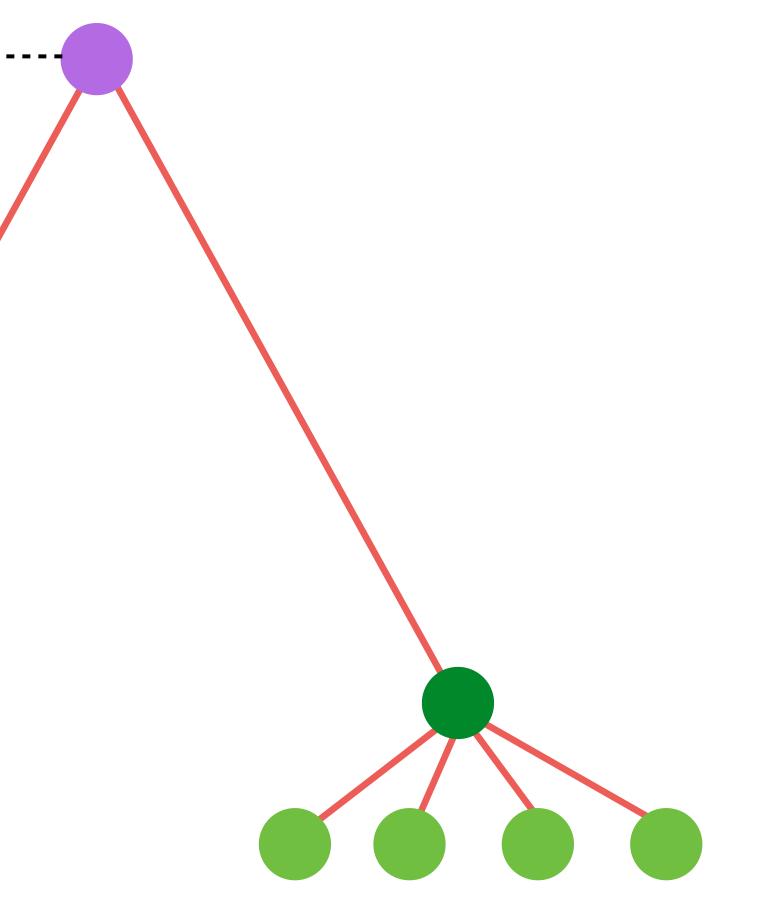


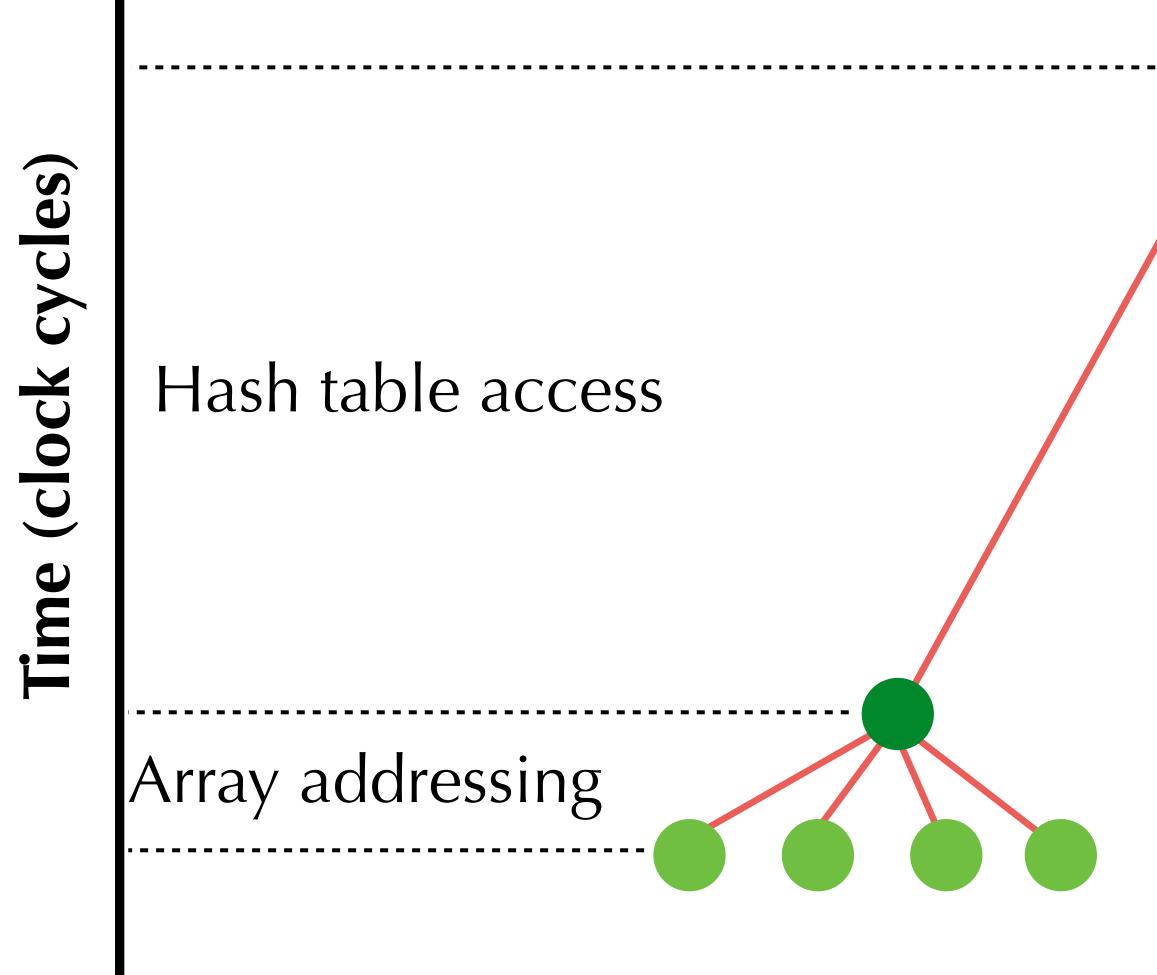
Dense Data Structure

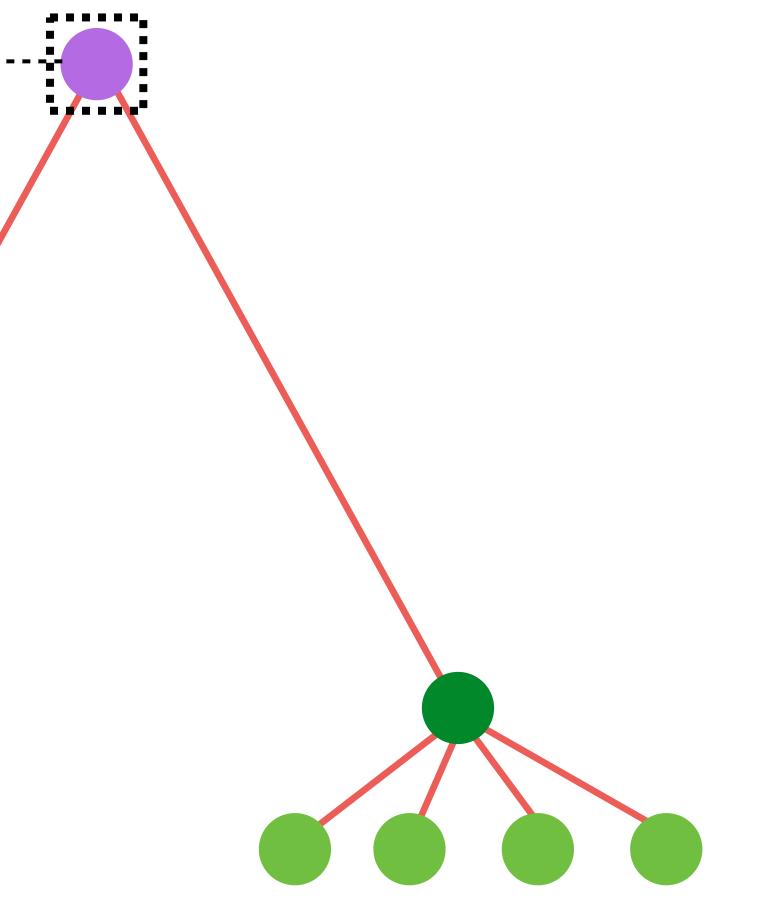


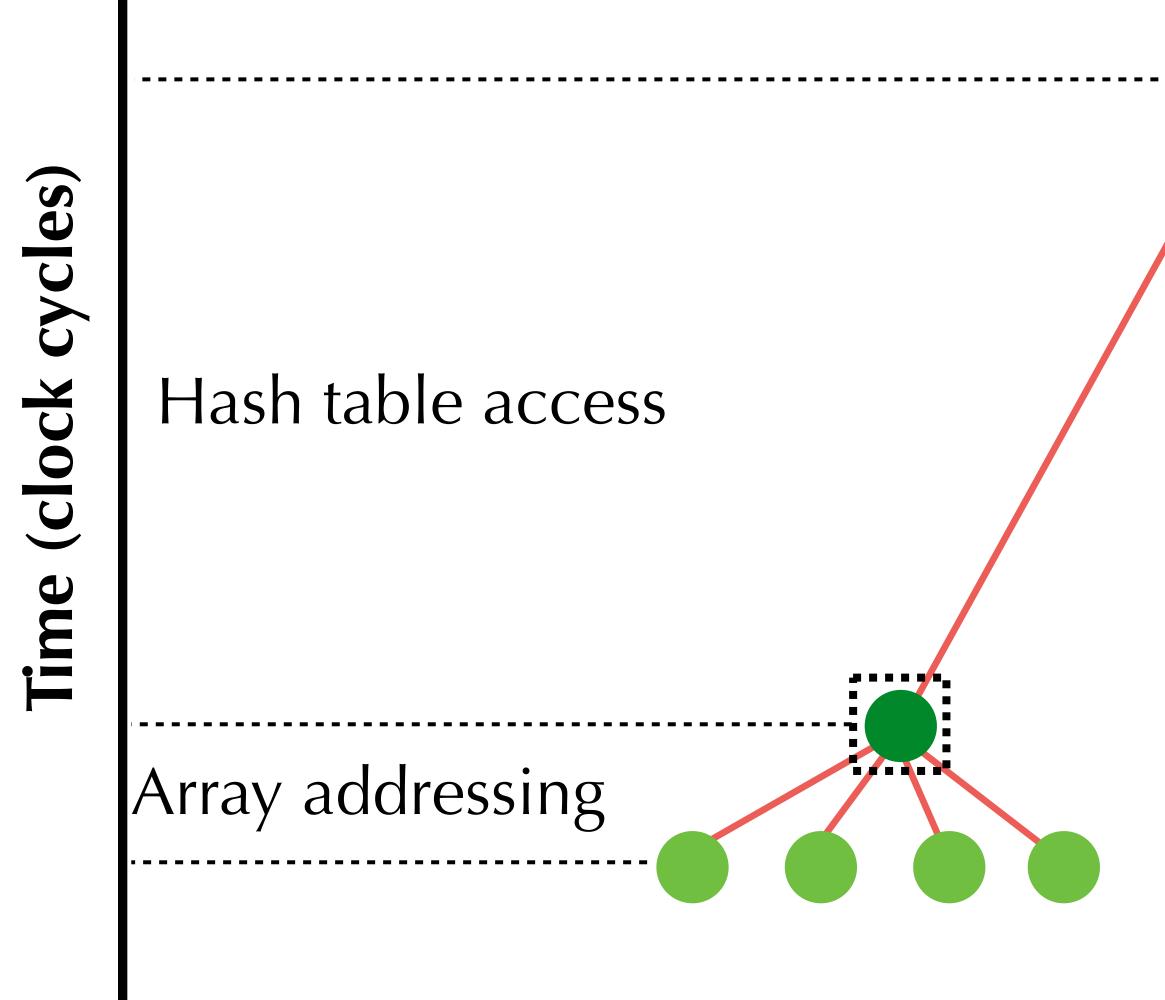
Dense Data Structure

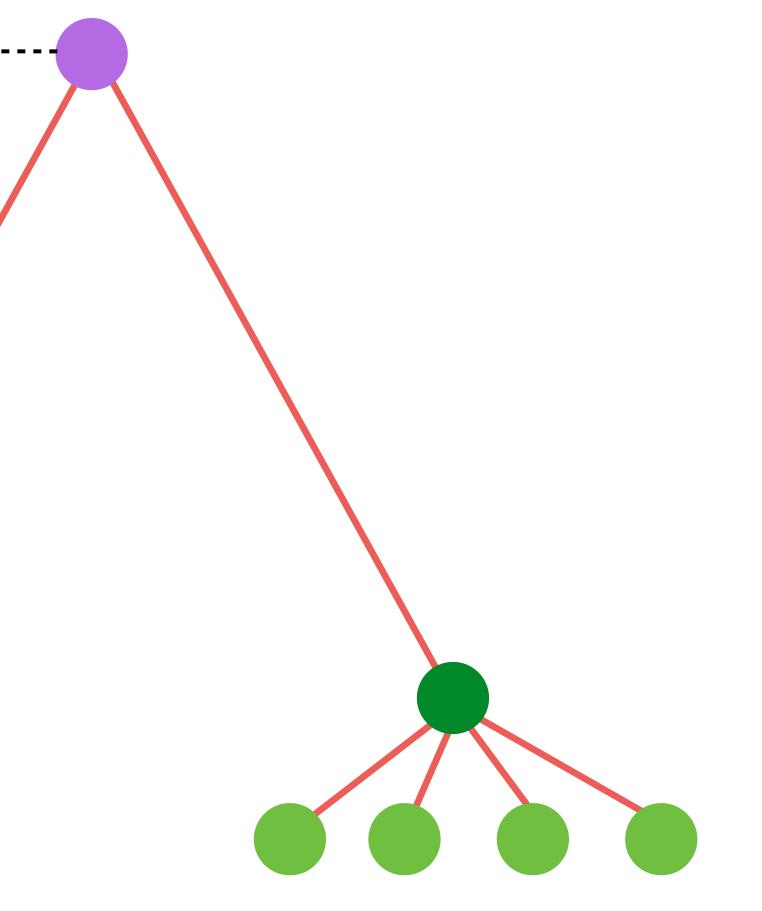


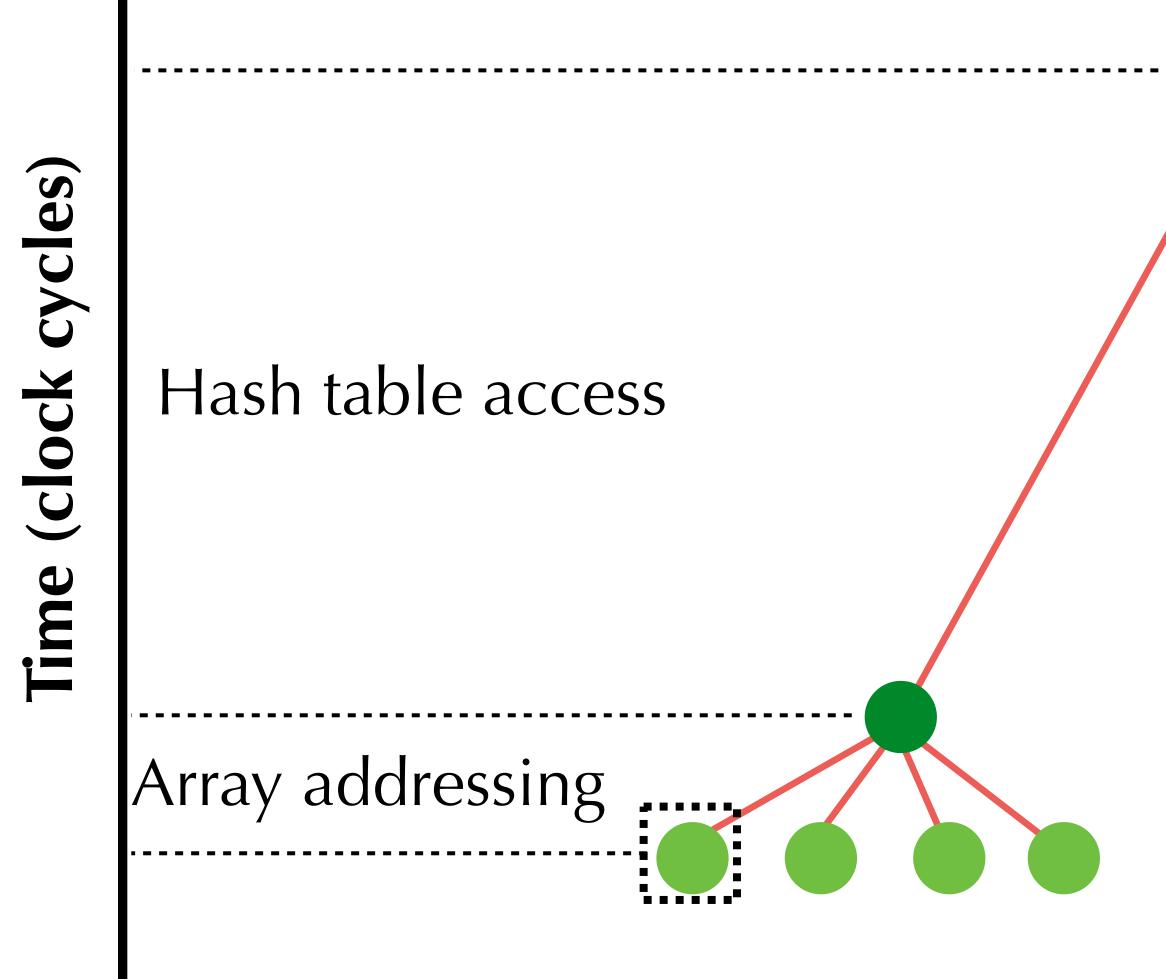


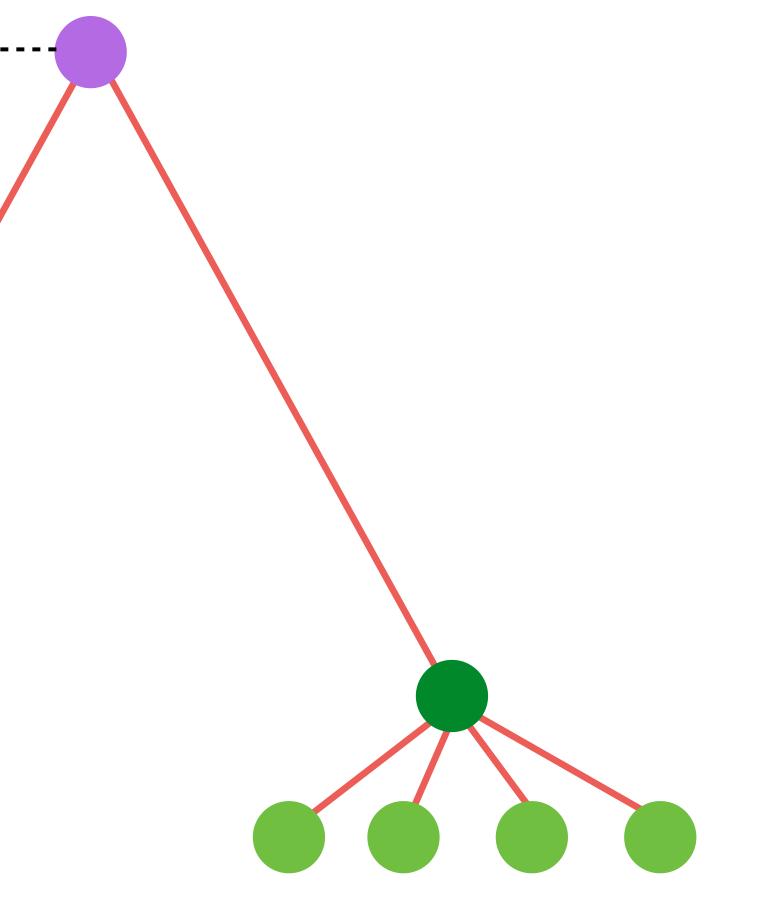


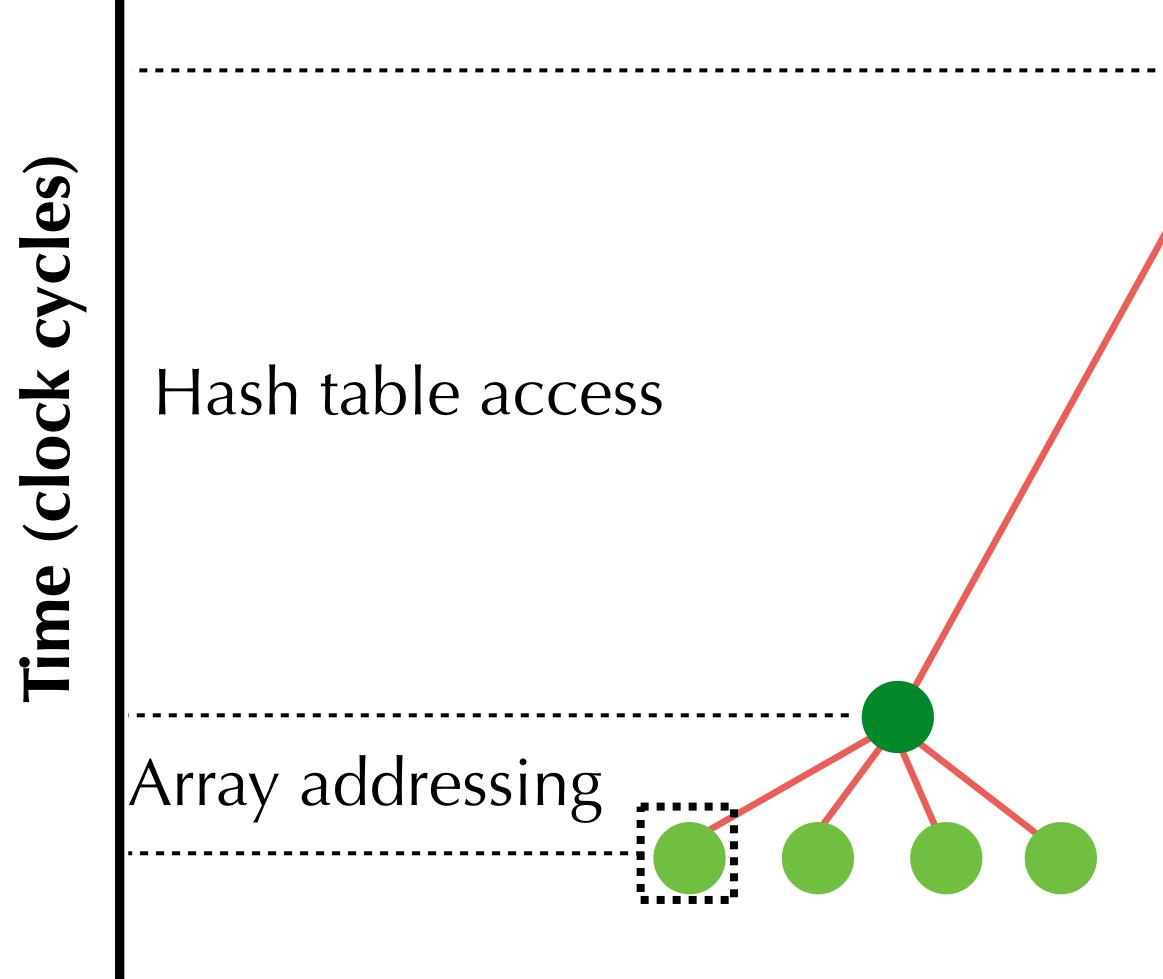


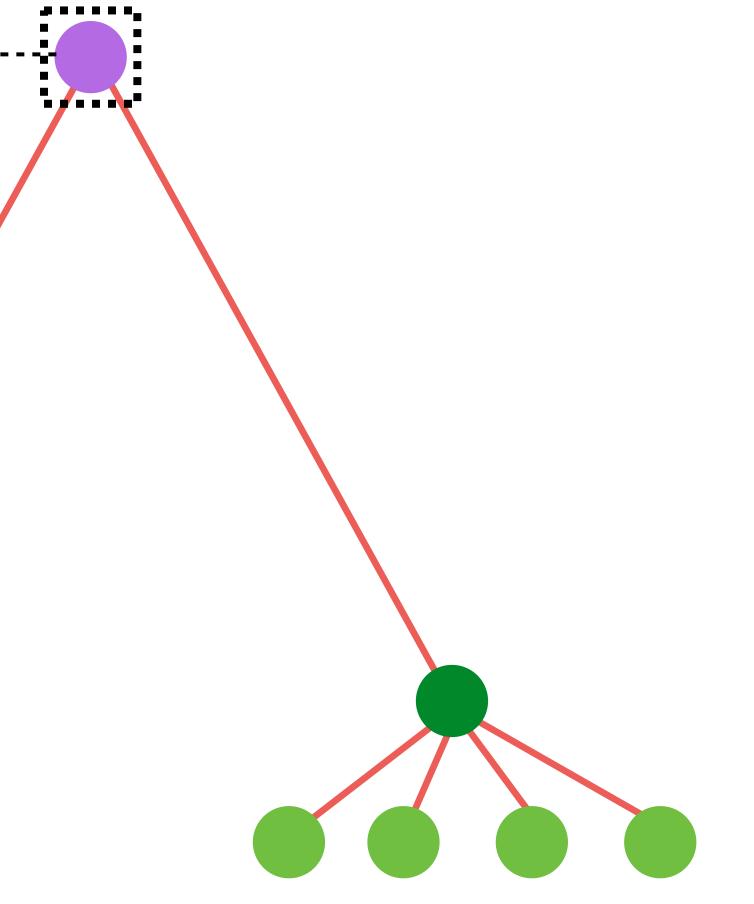


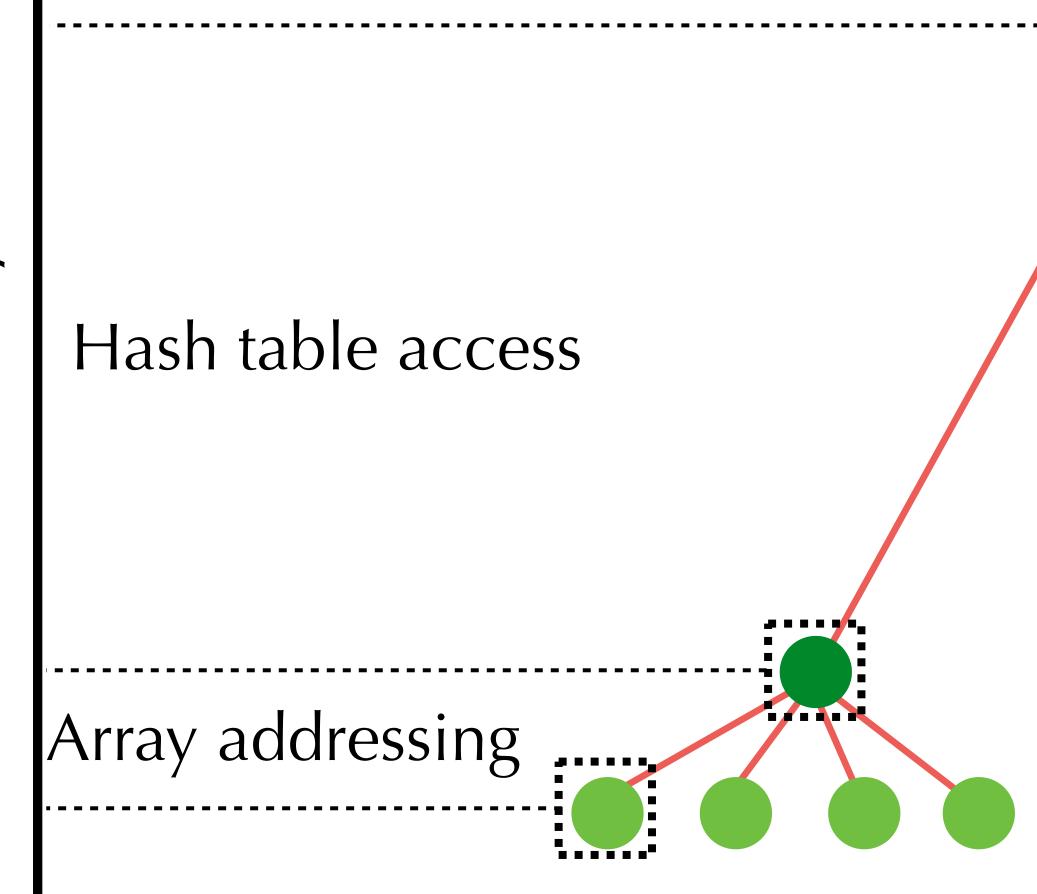


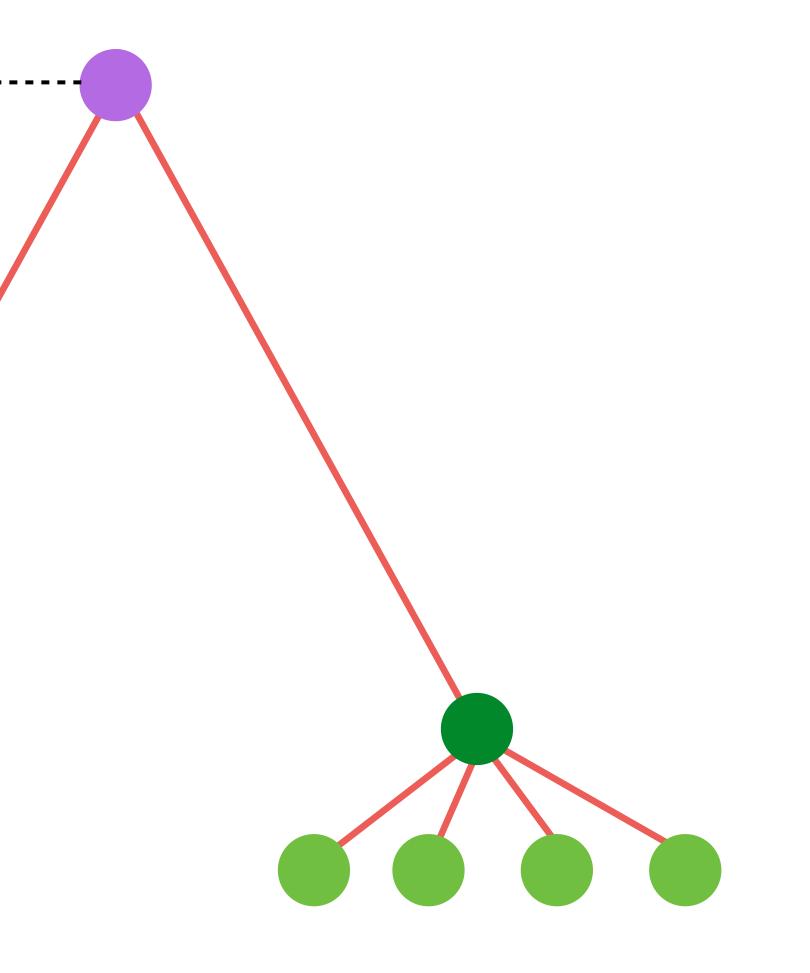


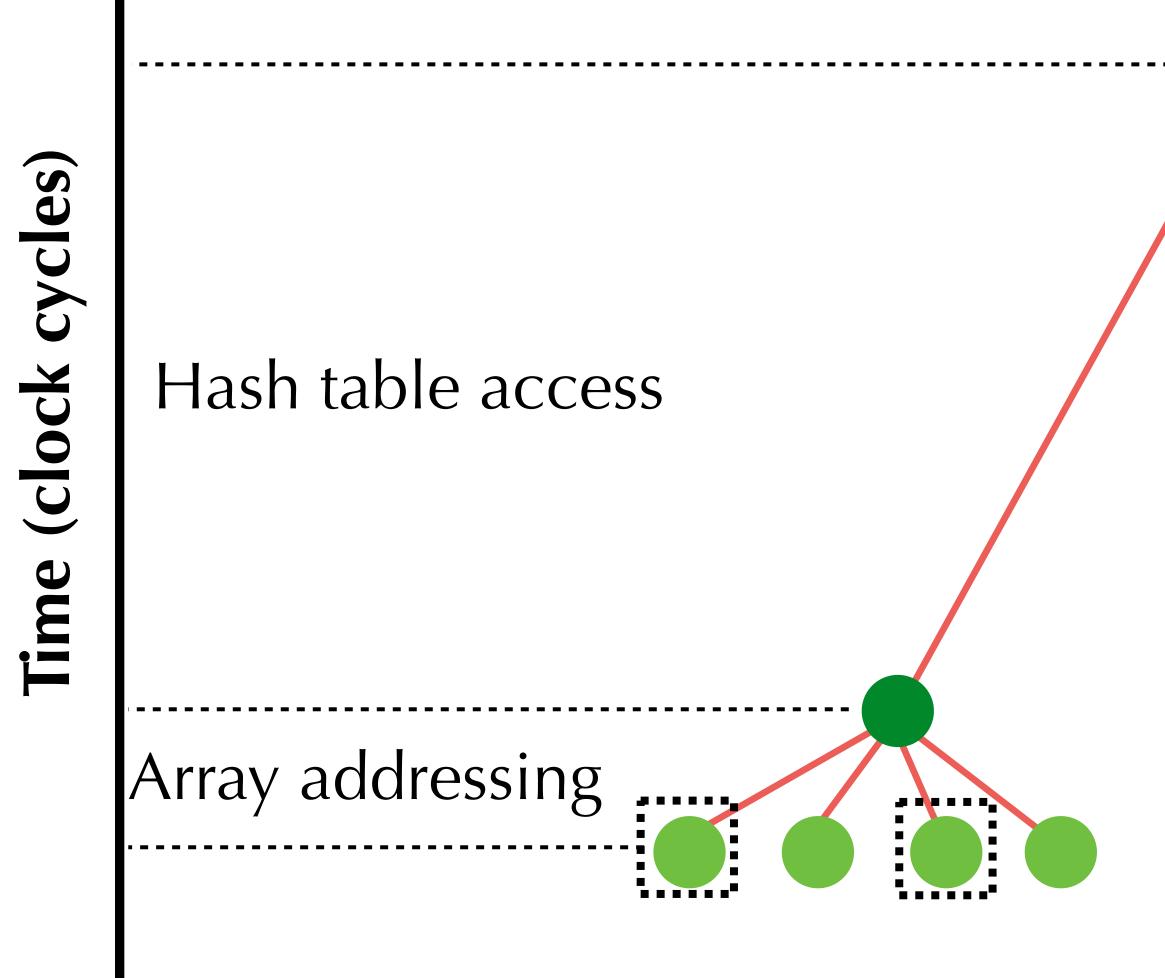


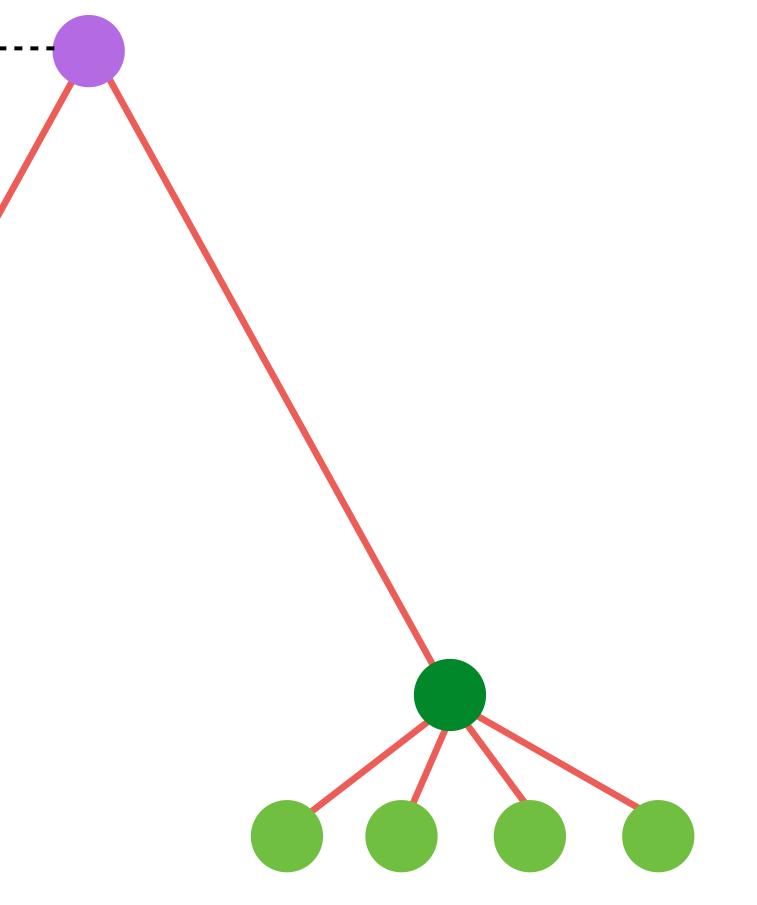


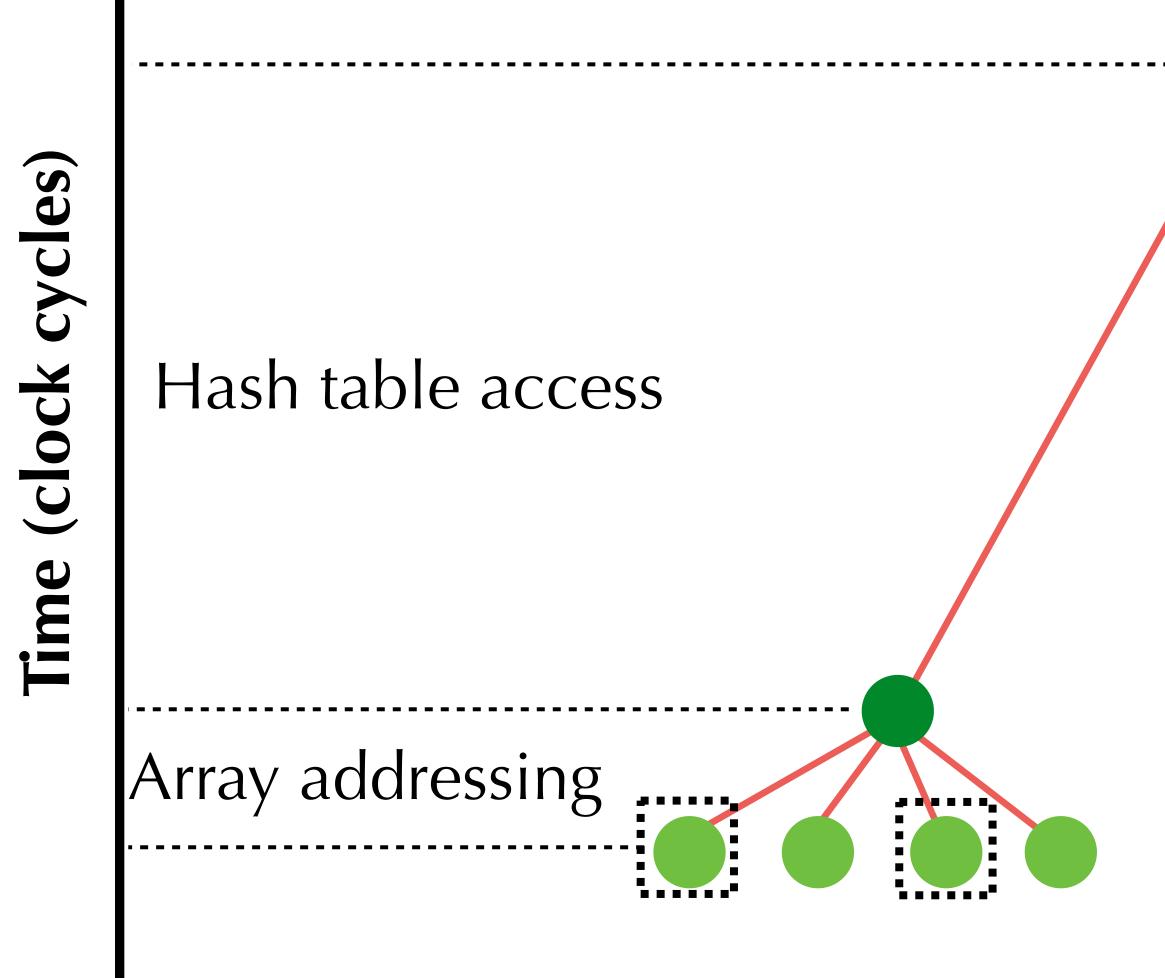


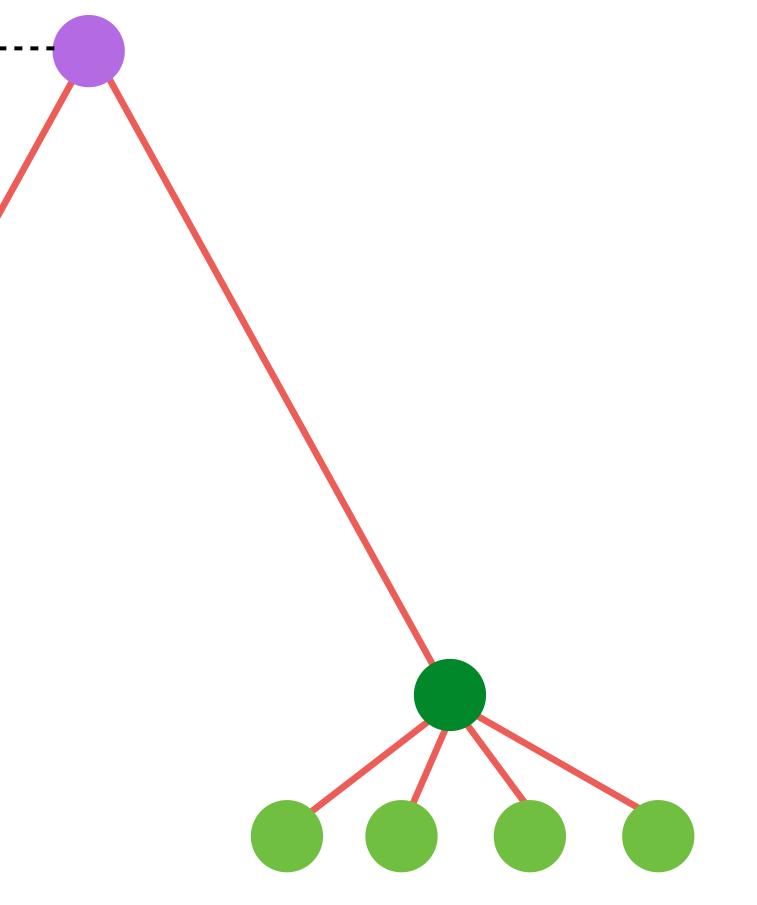




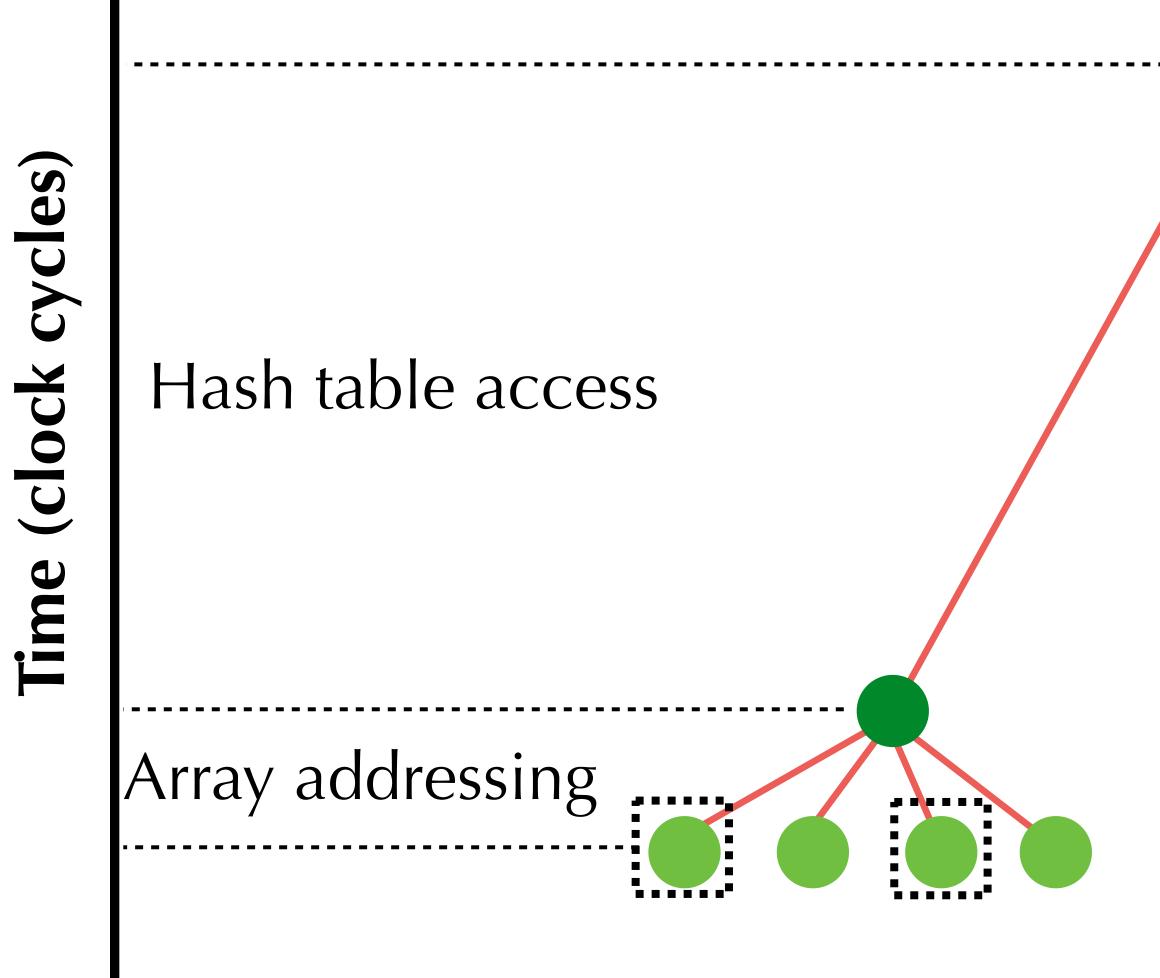




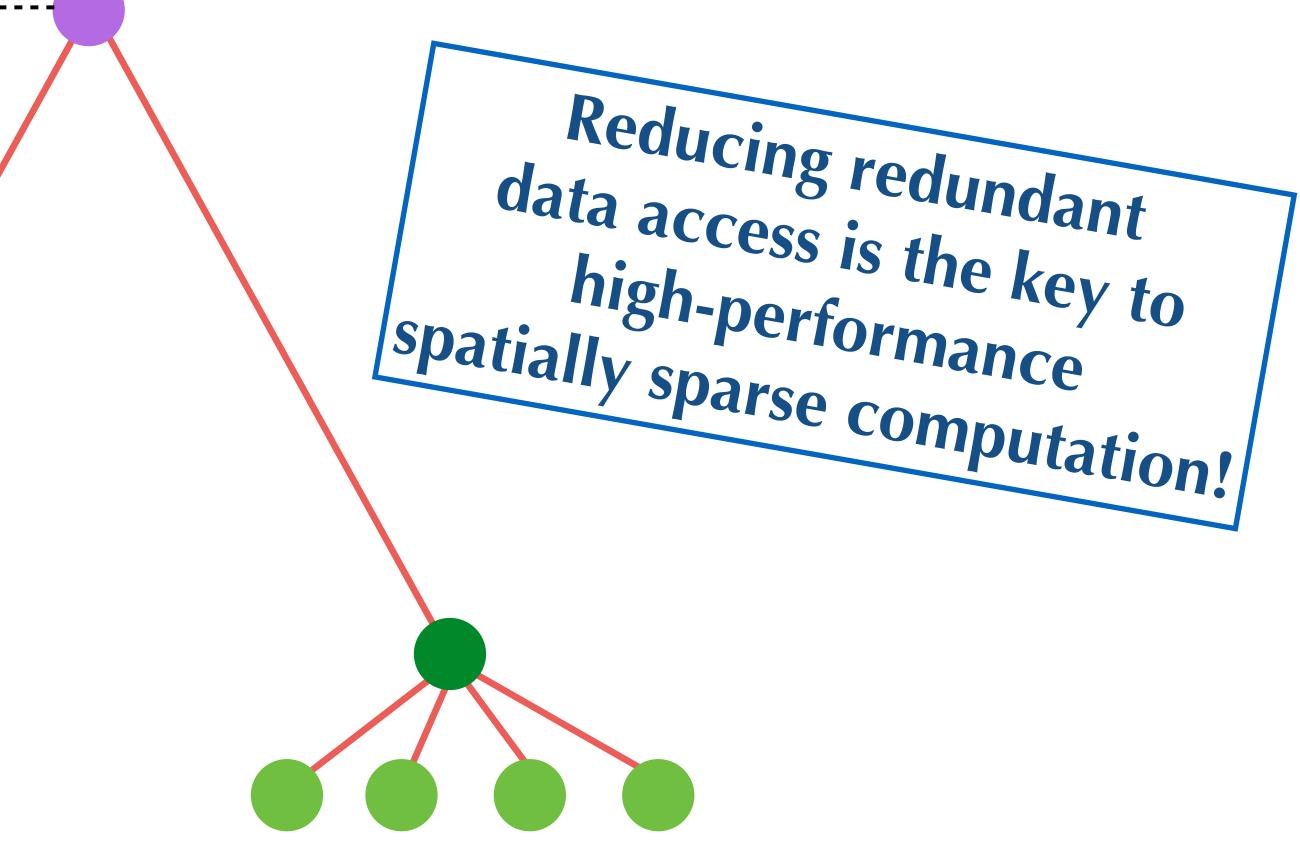




Data Accesses Drawn Proportionally...



Sparse Data Structure



Traditional Sparse Computation Workflow

- **1.** Choose a sparse data structure library
- 2. Implement the algorithm on that sparse data structure
- 3. Do low-level engineering to optimize for performance • Code is complex and coupled with the data structure library

Traditional Sparse Computation Workflow

- 1. Choose a sparse data structure library
- 2. Implement the algorithm on that sparse data structure
- 3. Do low-level engineering to optimize for performance • Code is complex and coupled with the data structure library

 - "Oh no, this data structure isn't really optimal for this algorithm"

start over

Ideal Sparse Computing Workflow

- 1. Implement the algorithm as if all grids are dense
- 2. Describe your data structure
- 3. The compiler optimizes performance
- Benchmark performance, and try different data structures

Ideal Sparse Computing Workflow

- 1. Implement the algorithm as if all grids are dense
- 2. Describe your data structure
- 3. The compiler optimizes performance
 - Benchmark performance, and try different data structures

e.g., Halide [Ragan-Kelley, Adams, Paris, Levoy, Amarasinghe, Durand. SIGGRAPH 2012]

- Related work: split languages,

Decouple computation from data structures 1)

Computational Kernels	(Sparse) Data Structur

res

Decouple computation from data structures 1)

Computational Kernels

(Sparse) Data Structur

```
Kernel(laplace).def([&]() {
  For(u, [&](Expr i, Expr j){
    auto c = 1.0f / (dx * dx);
    u[i, j] = c * (4 * v[i, j] - v[i+1, j]
- v[i-1, j] - v[i, j+1] - v[i, j-1]);
 });
});
                            2D Laplace operator
```

2) Imperative computation language

res

Decouple computation from data structures 1)

Computational Kernels

```
Kernel(laplace).def([&]() {
  For(u, [&](Expr i, Expr j){
   auto c = 1.0f / (dx * dx);
   u[i, j] = c * (4 * v[i, j] - v[i+1, j])
             - v[i-1, j] - v[i, j+1] - v[i, j-1]);
 });
});
                        2D Laplace operator
```

(Sparse) Data Structures

Global(u, f32); Global(v, f32); layout([&]() { auto ij = Indices(0, 1); root.dense(ij, {128, 128}).pointer() .dense(ij, {8, 8}).place(u, v); **});**

1024² sparse grid with 8²

2) Imperative computation language

3) Hierarchical data structure description language

Decouple computation from data structures 1)

Computational Kernels

```
Kernel(laplace).def([&]() {
  For(u, [&](Expr i, Expr j){
    auto c = 1.0f / (dx * dx);
    u[i, j] = c * (4 * v[i, j] - v[i+1, j]
- v[i-1, j] - v[i, j+1] - v[i, j-1]);
 });
});
                            2D Laplace operator
```

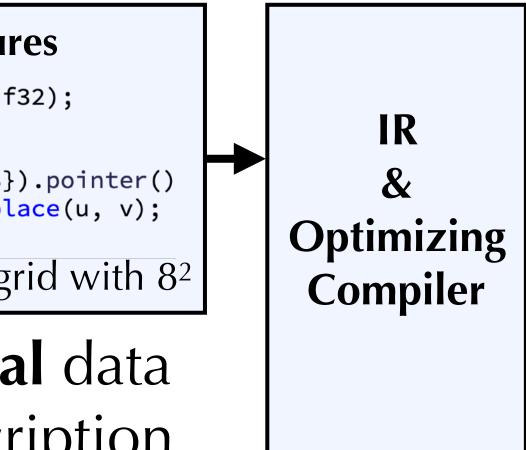
(Sparse) Data Structures

Global(u, f32); Global(v, f32); layout([&]() { auto ij = Indices(0, 1); root.dense(ij, {128, 128}).pointer() .dense(ij, {8, 8}).place(u, v); **});**

1024² sparse grid with 8²

2) Imperative computation language

3) Hierarchical data structure description language



4) Intermediate representation (IR) & data structure access optimizations

Decouple computation from data structures 1)

Computational Kernels

```
Kernel(laplace).def([&]() {
  For(u, [&](Expr i, Expr j){
    auto c = 1.0f / (dx * dx);
    u[i, j] = c * (4 * v[i, j] - v[i+1, j]
- v[i-1, j] - v[i, j+1] - v[i, j-1]);
 });
});
                            2D Laplace operator
```

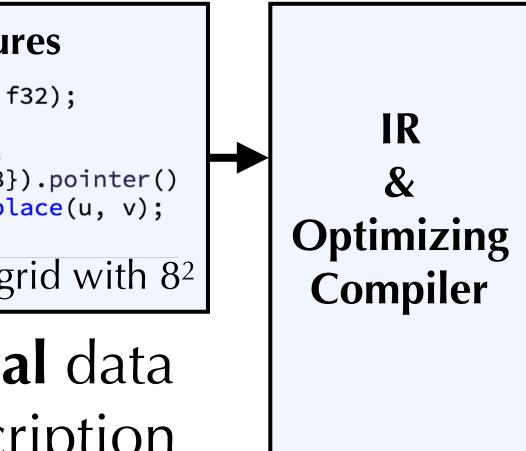
(Sparse) Data Structures

Global(u, f32); Global(v, f32); layout([&]() { auto ij = Indices(0, 1); root.dense(ij, {128, 128}).pointer() .dense(ij, {8, 8}).place(u, v); **});**

1024² sparse grid with 8²

2) Imperative computation language

3) Hierarchical data structure description language



4) Intermediate representation (IR) & data structure access optimizations **Runtime System**

5) Auto parallelization, memory management, ...

Decouple computation from data structures 1)

Computational Kernels

```
Kernel(laplace).def([&]() {
  For(u, [&](Expr i, Expr j){
    auto c = 1.0f / (dx * dx);
    u[i, j] = c * (4 * v[i, j] - v[i+1, j]
- v[i-1, j] - v[i, j+1] - v[i, j-1]);
 });
});
                            2D Laplace operator
```

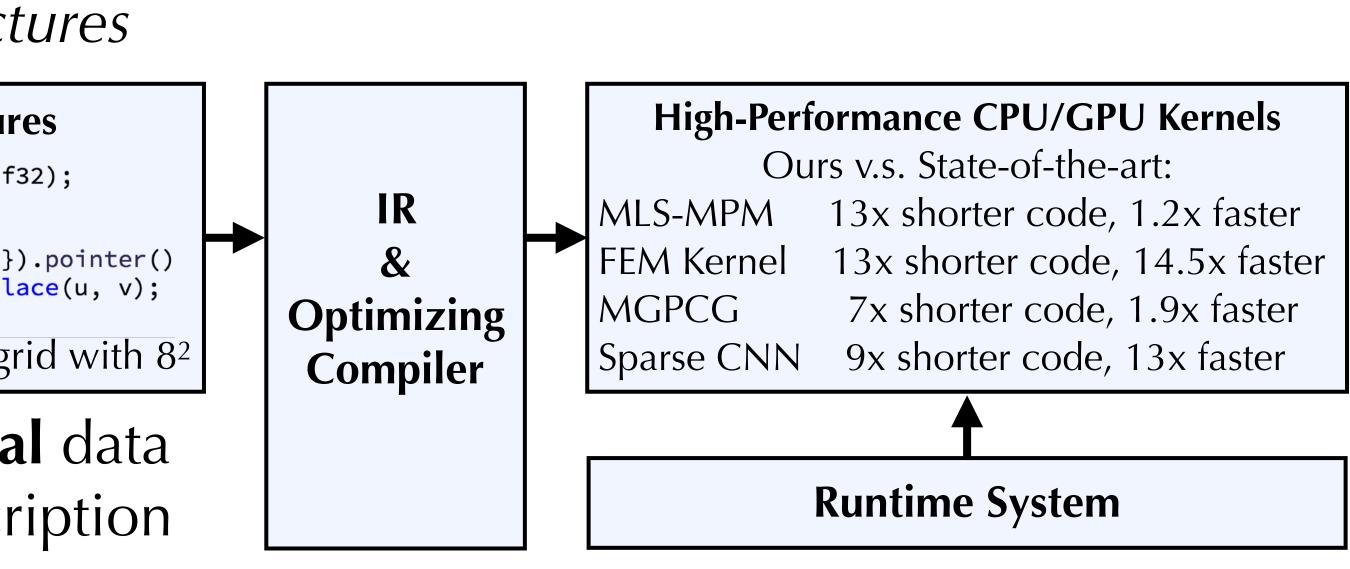
(Sparse) Data Structures

Global(u, f32); Global(v, f32); $layout([\&]() {$ auto ij = Indices(0, 1); root.dense(ij, {128, 128}).pointer() .dense(ij, {8, 8}).place(u, v); **});**

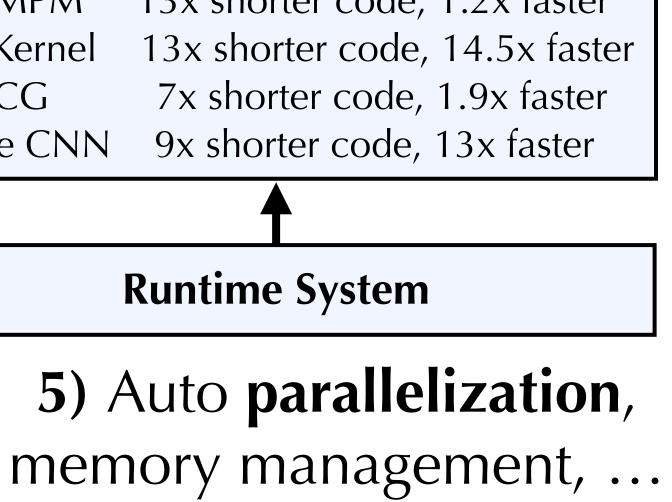
1024² sparse grid with 8²

2) Imperative computation language

3) Hierarchical data structure description language



4) Intermediate representation (IR) & data structure access optimizations



1) Decouple *computation* from *data structures*

Computational Kernels

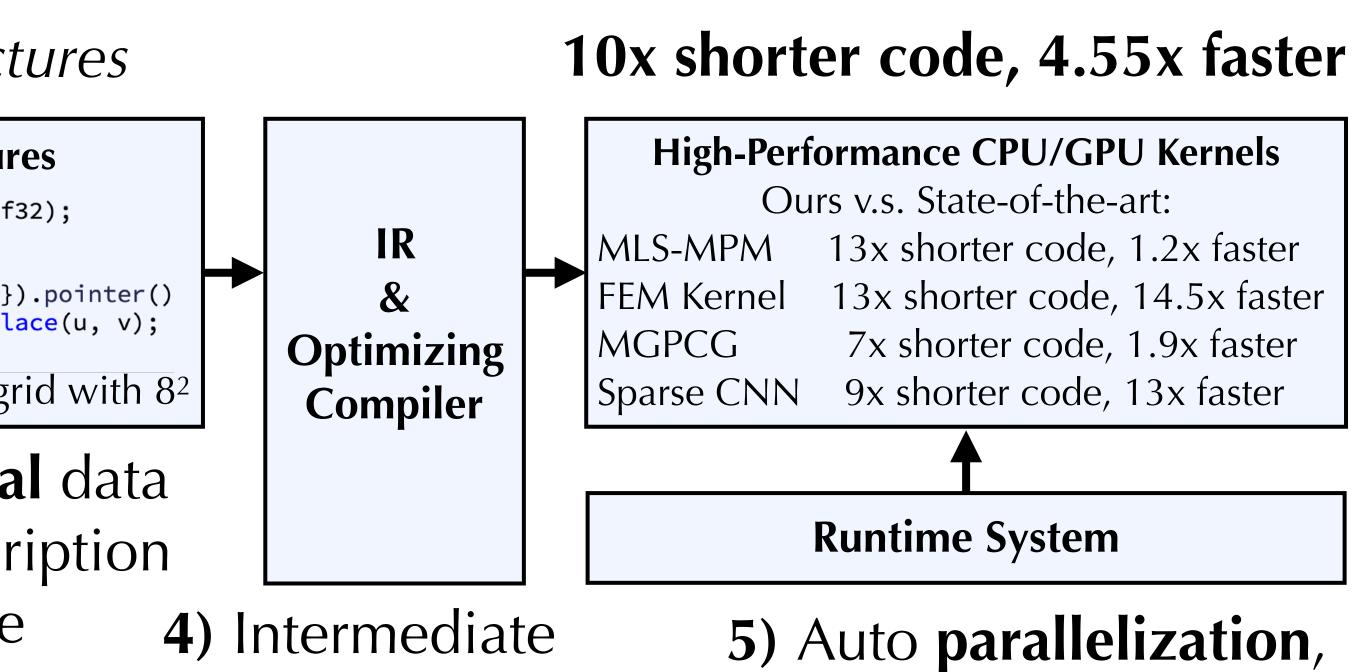
(Sparse) Data Structures

Global(u, f32); Global(v, f32);
layout([&]() {
 auto ij = Indices(0, 1);
 root.dense(ij, {128, 128}).pointer()
 .dense(ij, {8, 8}).place(u, v);
});

1024² sparse grid with 8²

2) Imperative computation language

3) Hierarchical data
 structure description
 language 2



4) Intermediate
 representation (IR) &
 data structure
 access optimizations

Defining Computation

$$u_{i,j} = \frac{1}{\Delta x^2} (4v_{i,j} - v_{i+1,j} - v_{i-1,j} - v_{i,j+1} - v_{i,j-1})$$

$$\downarrow$$
Taichi Kernel

- @ti.kernel def laplace(): for i, j in u: 3 c = 1 / (dx * dx)4 5 6

Finite Difference Stencil

u[i, j] = c * (4.0 * v[i, j] - v[i-1, j] - v[i+1, j]-v[i, j-1] - v[i, j+1])

Program on **sparse** data structures as if they are **dense**; **Parallel** for-loops (Single-Program-Multiple-Data, like CUDA/ispc); Loop over only active elements in the sparse data structure; Complex control flows (e.g. lf, While) supported.

Sample/pixel/sec: 7.1
depth_limit: 20
density_scale: 400.00
max_density: 724.000
ground_y: 0.029
light_phi: 0.419
light_theta: 0.218
light_smoothness: 0.0
light_ambient: 0.150
exposure: 0.567
gamma: 0.500
file_id: 0
output_samples: 10
grid_level: 1
video_step: 1
Save
Render All

7.126
.000
000
0.050
50
0
แ

Sample/pixel/sec: 7.1
depth_limit: 20
density_scale: 400.00
max_density: 724.000
ground_y: 0.029
light_phi: 0.419
light_theta: 0.218
light_smoothness: 0.0
light_ambient: 0.150
exposure: 0.567
gamma: 0.500
file_id: 0
output_samples: 10
grid_level: 1
video_step: 1
Save
Render All

7.126
.000
000
0.050
50
0
แ

dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordinates to data address in memory. Suitable for high sparsity.

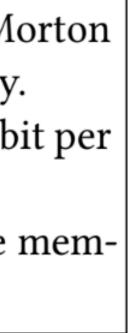
dynamic: Variable-length array, with a predefined maximum length. It serves the role of std::vector, and can be used to maintain objects (e.g. particles) contained by a block.

Structural Nodes

morton: Reorder the data in memory using a Z-order curve (Morton coding), for potentially higher spatial locality. For dense only. bitmasked: Use a mask to maintain sparsity information, one bit per child. For dense only.

pointer: Store pointers instead of the whole structure to save memory and maintain sparsity. For dense and dynamic.

Node Decorators



dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordinates to data address in memory. Suitable for high sparsity.

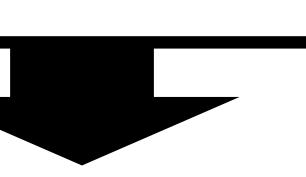
dynamic: Variable-length array, with a predefined maximum length. It serves the role of std::vector, and can be used to maintain objects (e.g. particles) contained by a block.

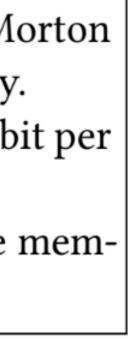
Structural Nodes

morton: Reorder the data in memory using a Z-order curve (Morton coding), for potentially higher spatial locality. For dense only. bitmasked: Use a mask to maintain sparsity information, one bit per child. For dense only.

pointer: Store pointers instead of the whole structure to save memory and maintain sparsity. For dense and dynamic.

Node Decorators





dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordinates to data address in memory. Suitable for high sparsity.

dynamic: Variable-length array, with a predefined maximum length. It serves the role of std::vector, and can be used to maintain objects (e.g. particles) contained by a block.

Structural Nodes

root.hash(ijk, 32).dense(ijk, 16).pointer() .dense(ijk, 8).place(u, v, w);

VDB [Museth 2013]

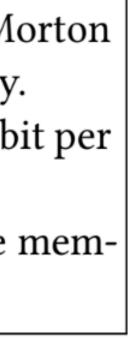
morton: Reorder the data in memory using a Z-order curve (Morton coding), for potentially higher spatial locality. For dense only. bitmasked: Use a mask to maintain sparsity information, one bit per child. For dense only.

pointer: Store pointers instead of the whole structure to save memory and maintain sparsity. For dense and dynamic.

Node Decorators

root.dense(ijk, 512).morton().bitmasked() .dense(ijk, {8, 4, 4}).place(flags, u, v, w);

SPGrid [Setaluri et al. 2014]



dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordinates to data address in memory. Suitable for high sparsity.

dynamic: Variable-length array, with a predefined maximum length. It serves the role of std::vector, and can be used to maintain objects (e.g. particles) contained by a block.

Structural Nodes

root.hash(ijk, 32).dense(ijk, 16).pointer() .dense(ijk, 8).place(u, v, w);

VDB [Museth 2013]

root.hash(ijk, 512).dense(ijk, 512).morton().bitmasked().dense(ijk, {8, 4, 4}).place(flags, u, v, w);

morton: Reorder the data in memory using a Z-order curve (Morton coding), for potentially higher spatial locality. For dense only. bitmasked: Use a mask to maintain sparsity information, one bit per child. For dense only.

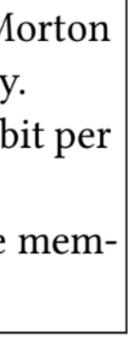
pointer: Store pointers instead of the whole structure to save memory and maintain sparsity. For dense and dynamic.

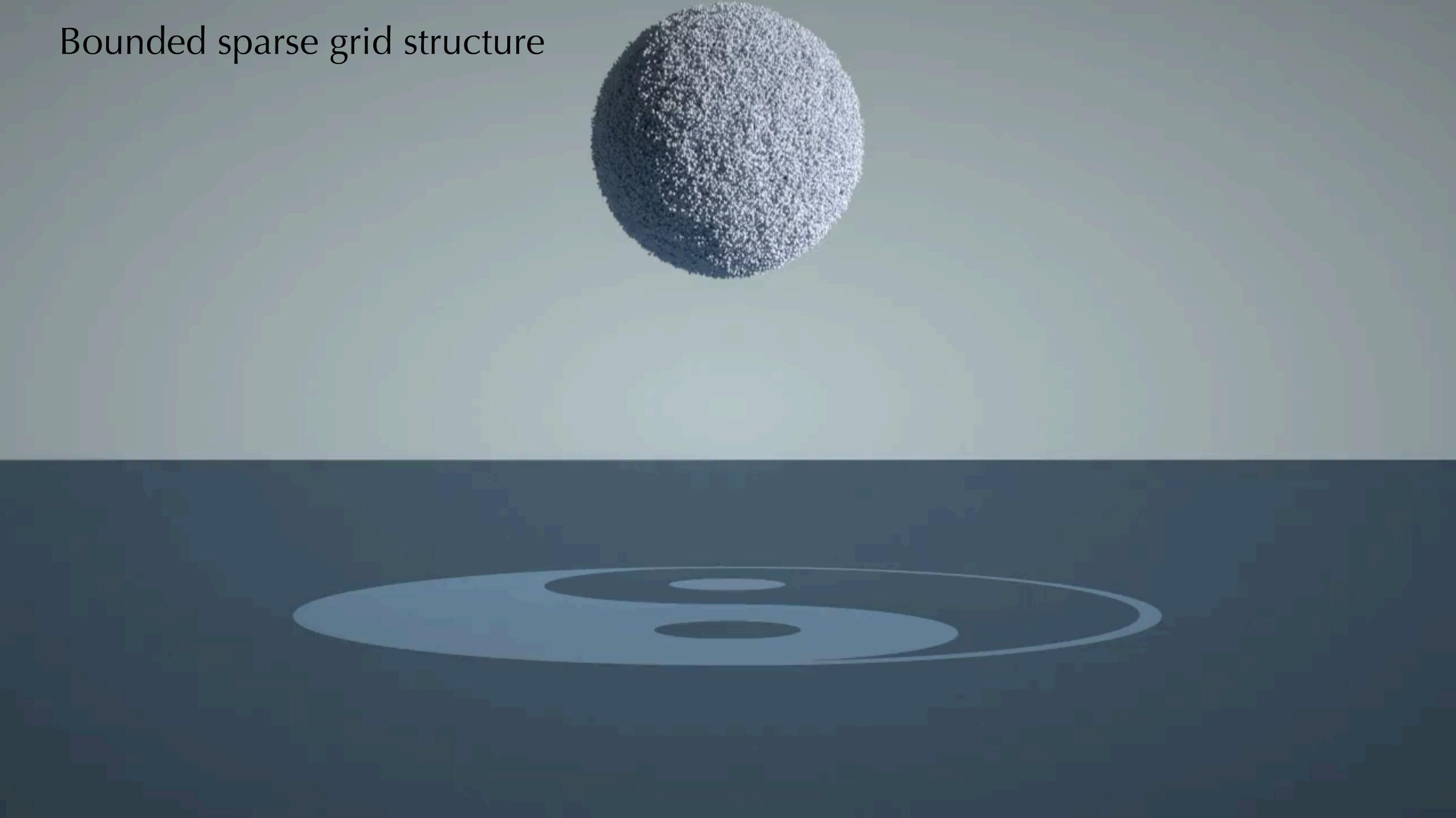
Node Decorators

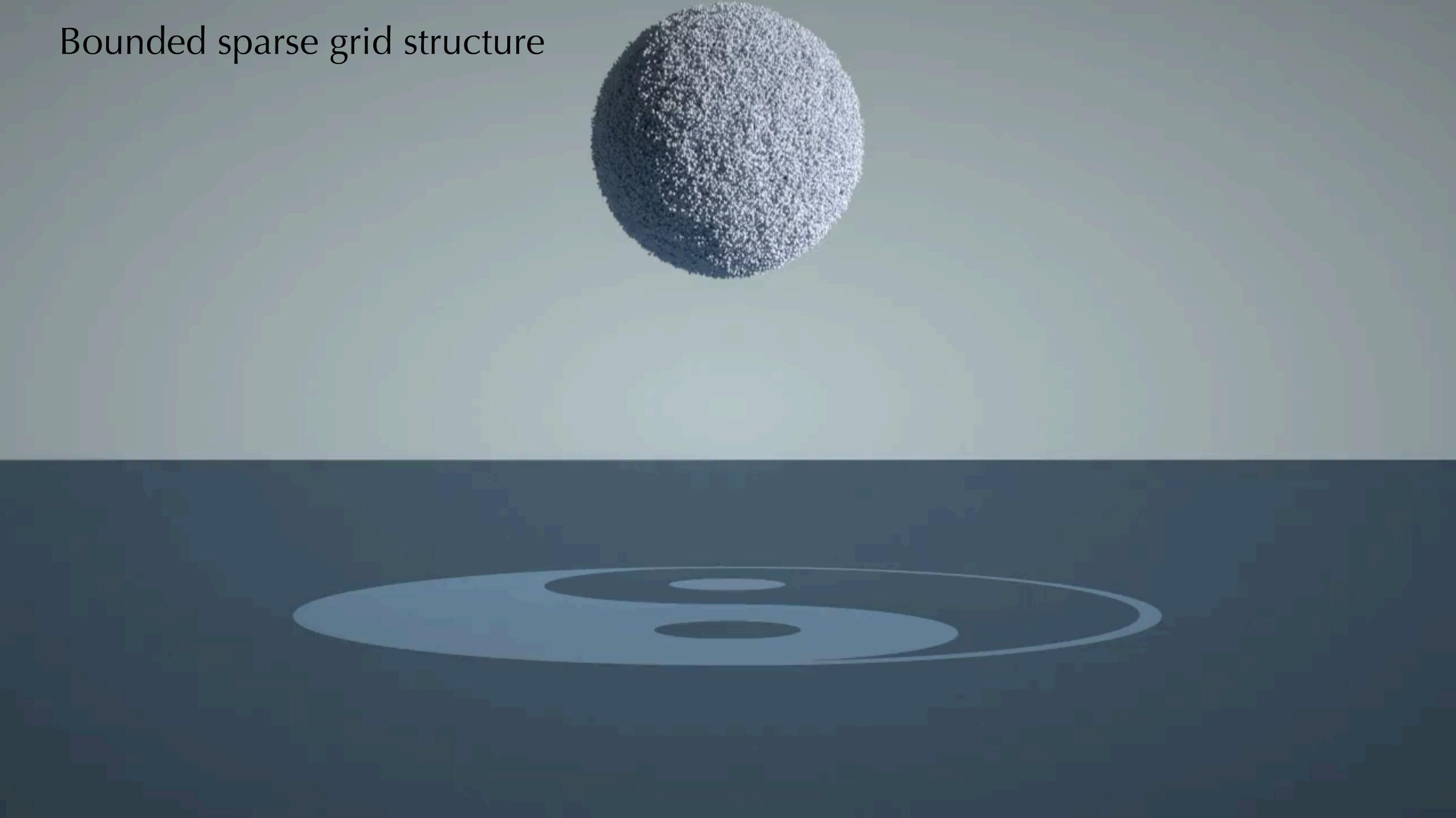
root.dense(ijk, 512).morton().bitmasked() .dense(ijk, {8, 4, 4}).place(flags, u, v, w);

SPGrid [Setaluri et al. 2014]

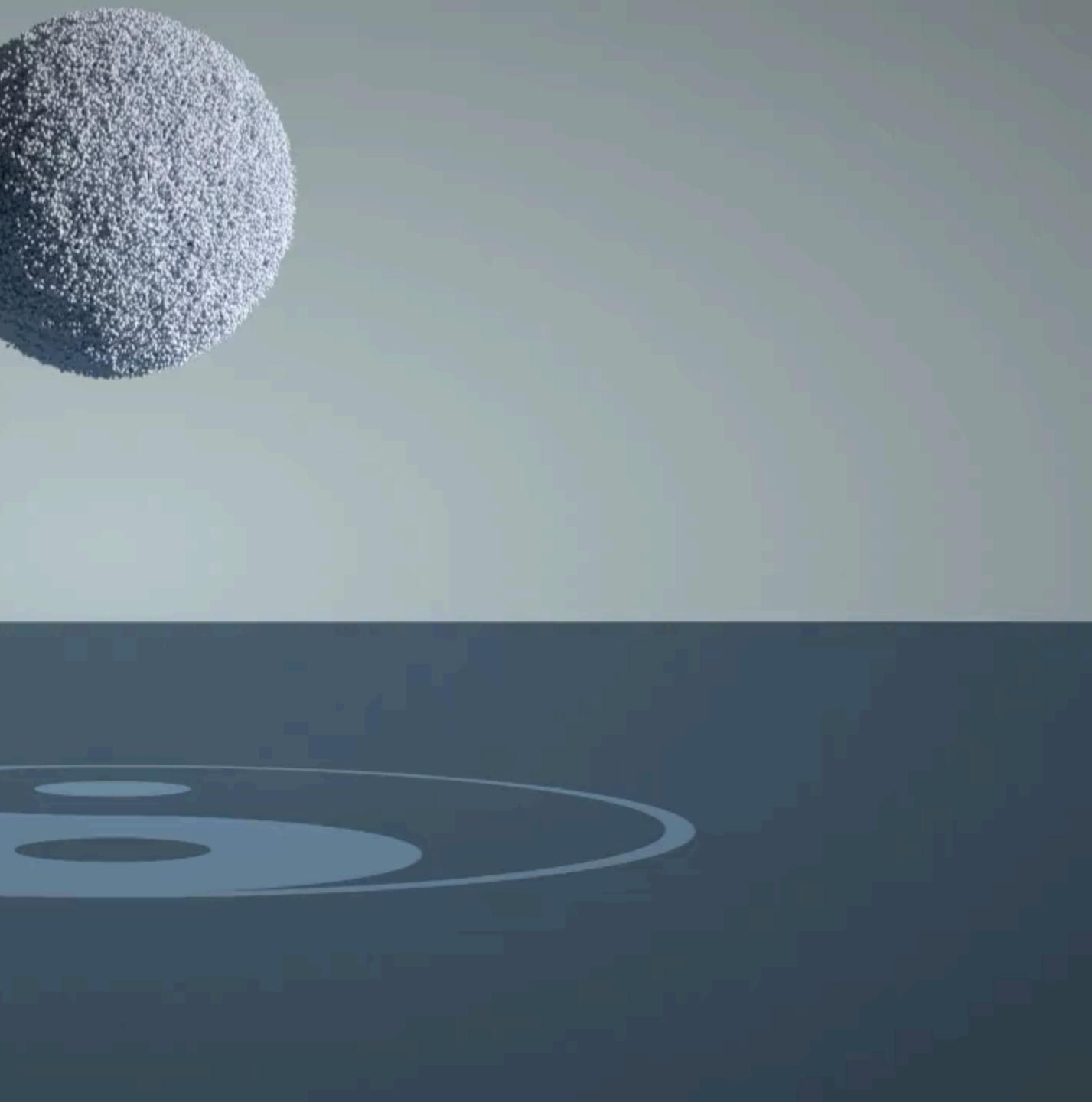
"SPVDB"



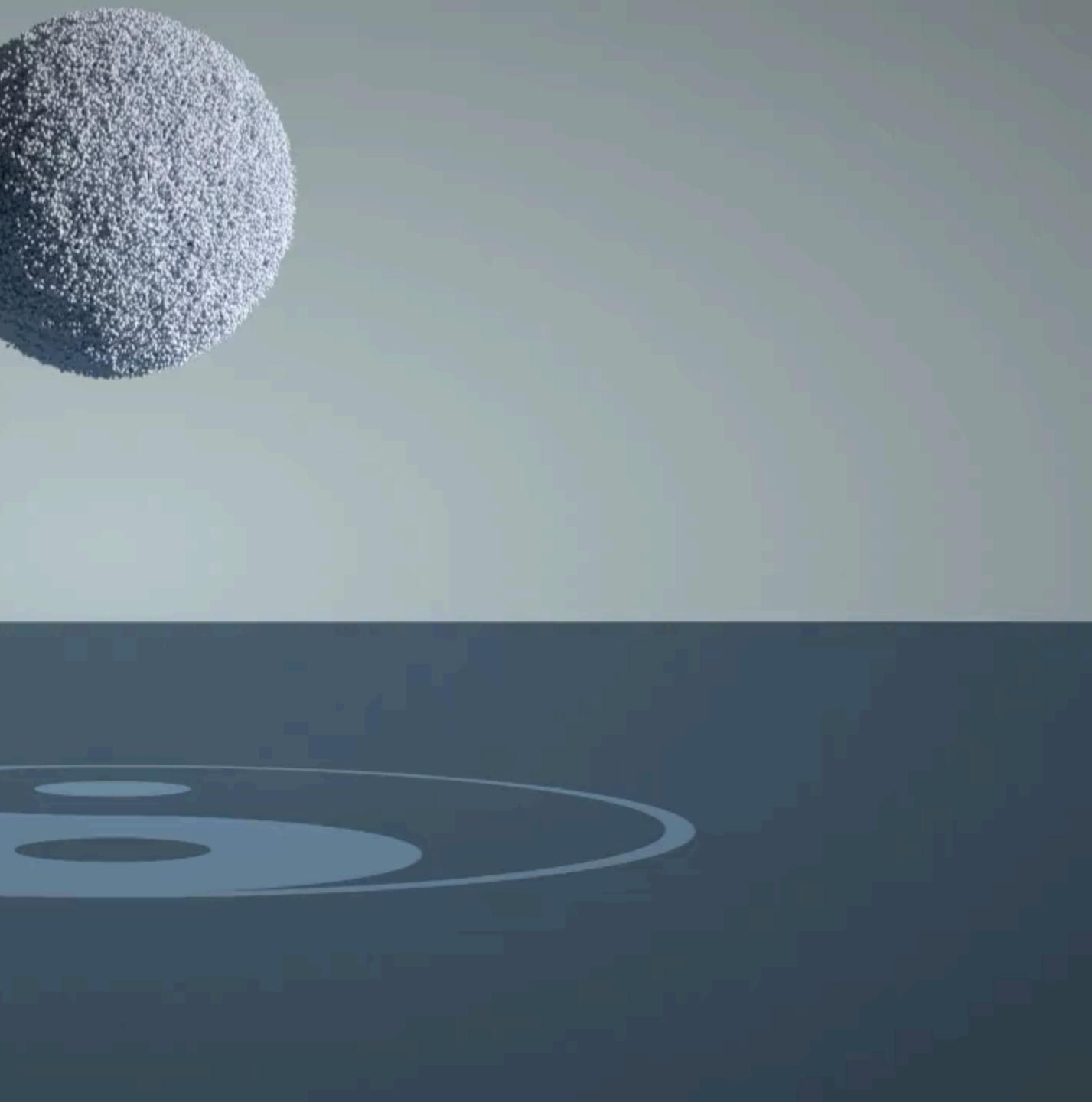




Unbounded sparse grid structure

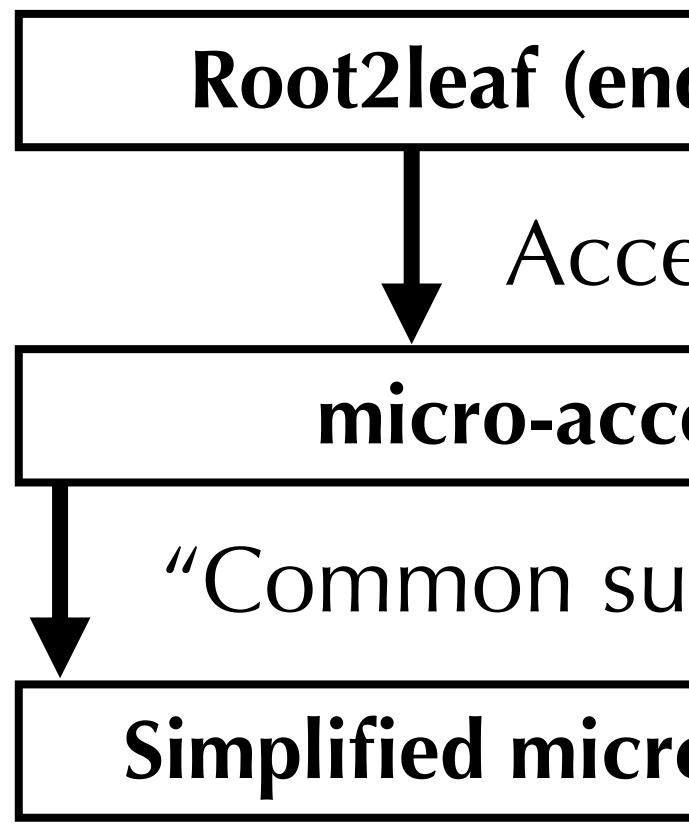


Unbounded sparse grid structure



Access Simplification based on computation and data structure info

Access Simplification



Root2leaf (end2end) data access

Access lowering

micro-access instructions

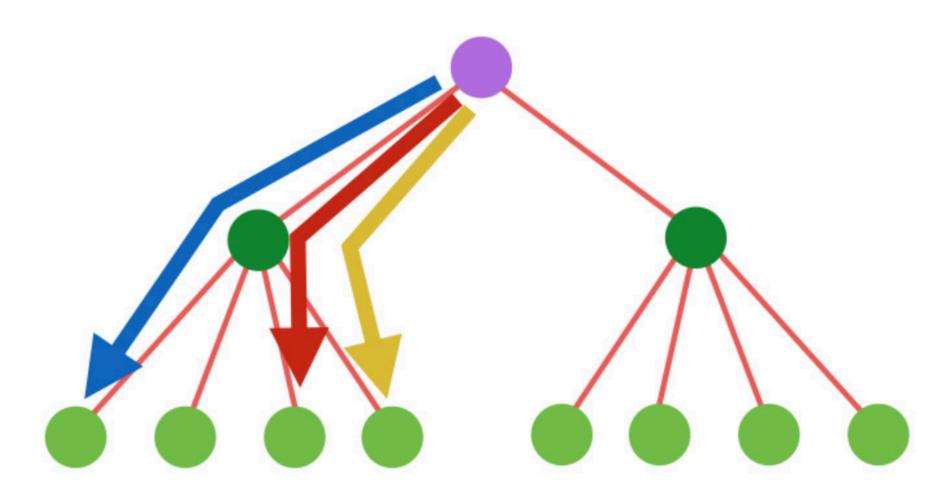
"Common subexpression elimination"

Simplified micro-access instructions

Access Simplification

Removing redundant data structure traversals

Unoptimized Accesses

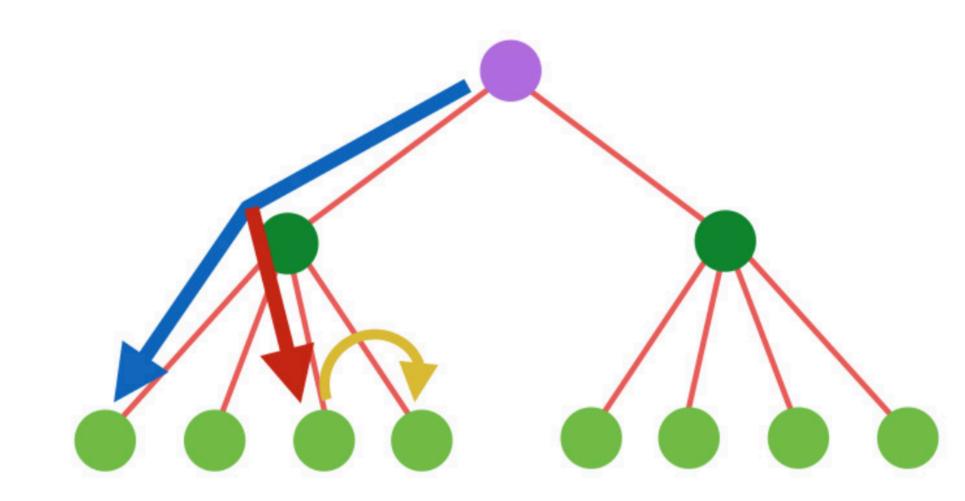


More optimizations:

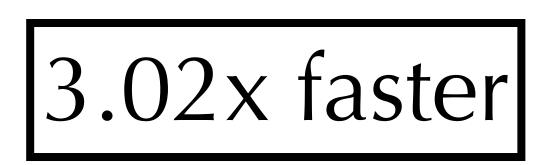
• • •

- shared memory utilization on GPUs;
- avoid unnecessary activation checks;
- better vectorized loads on CPUs;

Optimized Accesses

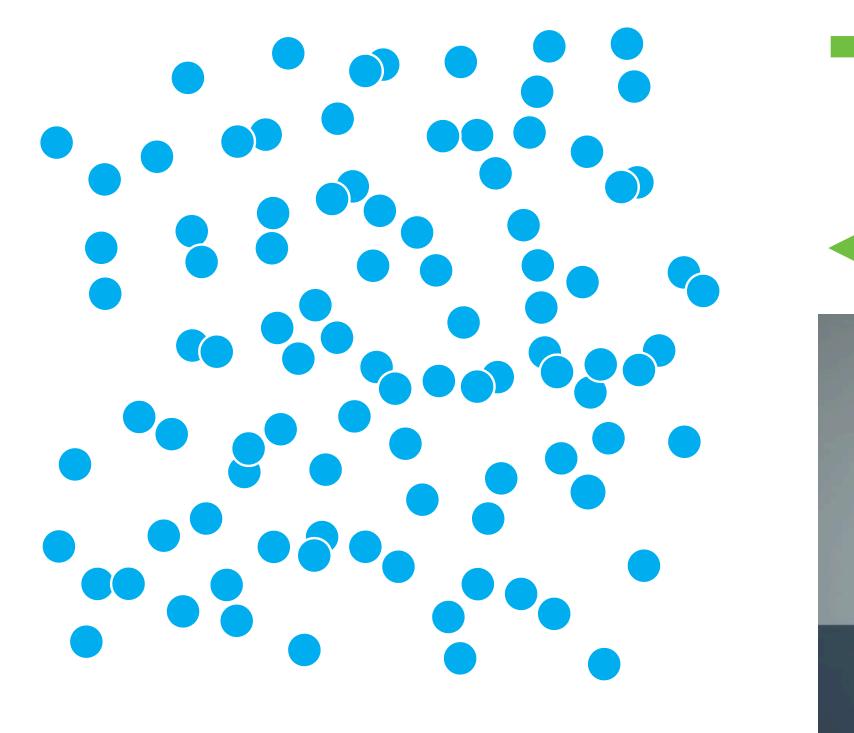


on on GPUs; ation checks; on CPUs;



Results 10.0x shorter code 4.55x higher performance

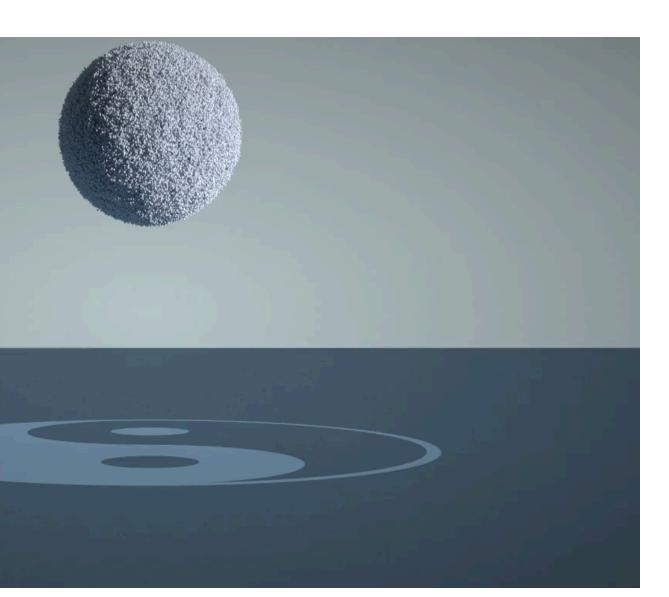
High-Performance CPU/GPU Kernels
Ours v.s. State-of-the-art:MLS-MPM13x shorter code, 1.2x fasterFEM Kernel13x shorter code, 14.5x fasterMGPCG7x shorter code, 1.9x fasterSparse CNN9x shorter code, 13x faster

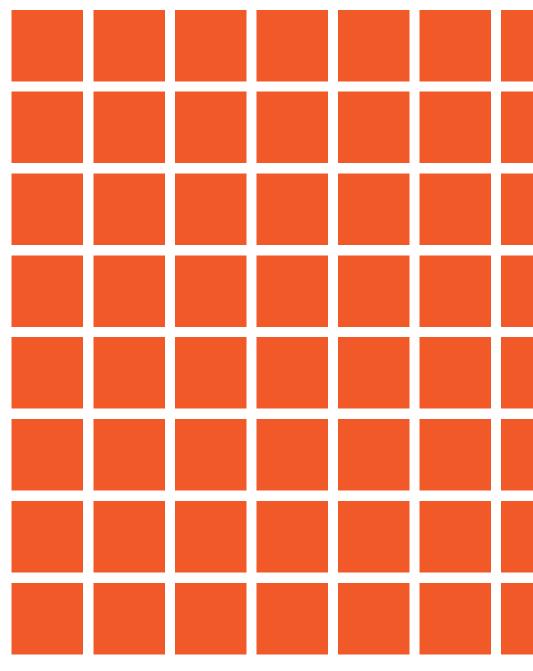


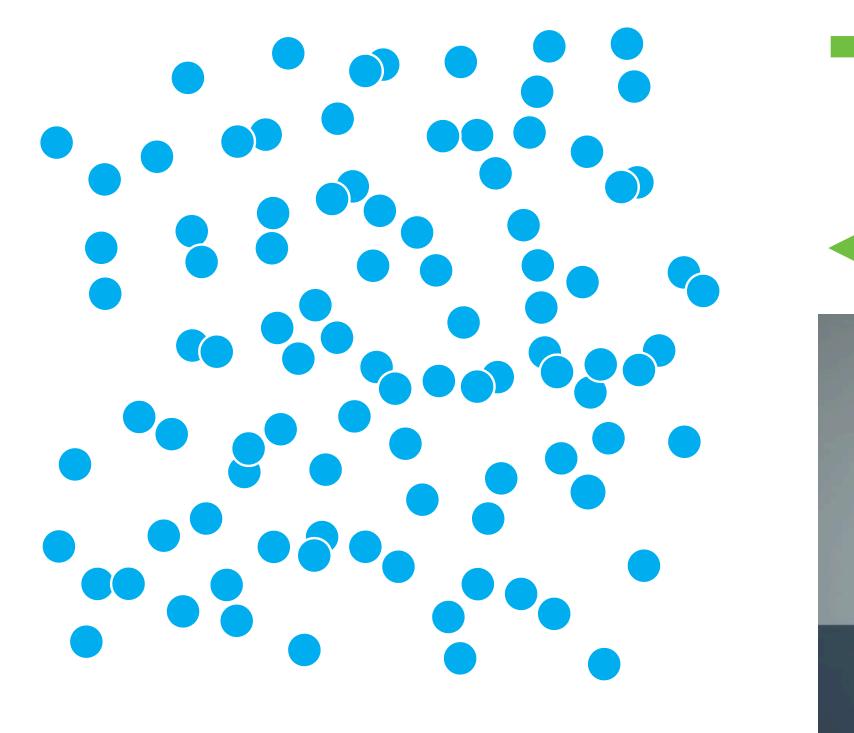
Patterns: Particle scatter/gather

Particle to Grid (P2G)

Grid to Particle (G2P)



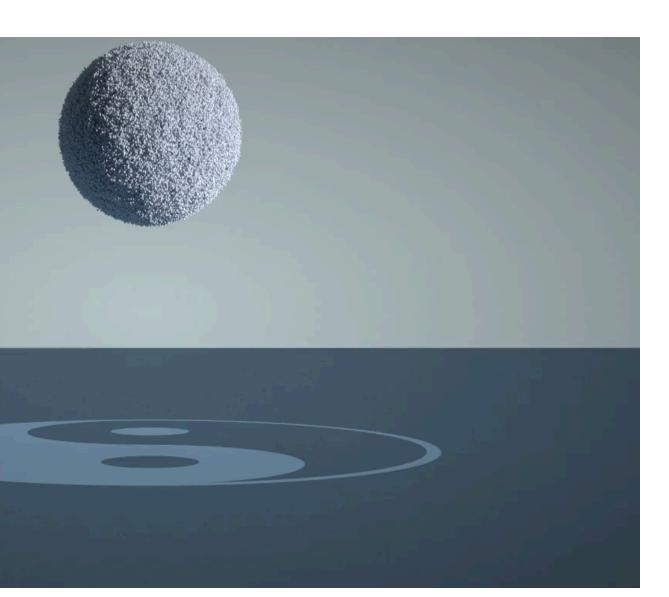


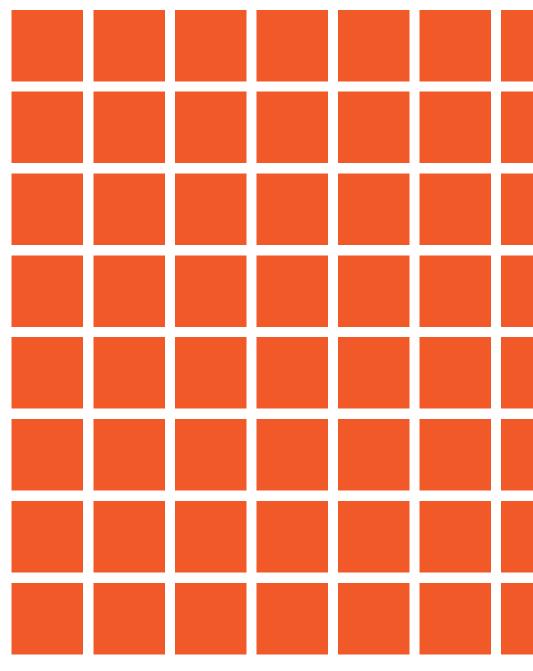


Patterns: Particle scatter/gather

Particle to Grid (P2G)

Grid to Particle (G2P)





Particle Layout	Ord
SOA	3.5
AOS	3.1

AOS much faster than SOA for random access! No sorting needed.

ered Randomly Shuffled

- 52ms 21.23 ms
- $4.28 \mathrm{ms}$ 5ms

Reproduce: ti mpm_benchmark particle_soa=[true/false] initial_shuffle=[true/false]

Benchmarks: MLS-MPM The use of scratch pad memory [NVIDIA shared memory]

Grou	p particles & scatter/g	into blocks ather
	GPU-SPM	GPU+SPM
P2G	5.102ms	2.011ms
G2P	1.975ms	0.722ms

Reproduce: ti mpm_benchmark use_cache=[true/false]

Benchmarks: MLS-MPM The use of scratch pad memory [NVIDIA shared memory]

Group partic & scat
GPU-S
P2G 5.102
G2P 1.975

Reproduce: ti mpm_benchmark use_cache=[true/false]

- cles into blocks ter/gather
- PM **GPU+SPM**
- 2.011ms 2ms
- ims 0.722 ms

2-3x faster using shared memory

Index analysis for scratchpad memory size inference

Compared with baseline [Gao et al.]: [GPU] 1.2x faster 13x shorter code

Reproduce: ti mpm_benchmark particle_soa=[true/false] initial_shuffle=[true/false]

Benchmarks: FEM Kernel

$c \in C(i) j \in \mathcal{V}(c)$

 $\underline{\mathbf{f}} = \sum (\mu^{(c)} \cdot \mathbf{K}^{\mu} + \underline{\lambda}^{(c)} \cdot \mathbf{K}^{\lambda})_{i^{(c)} j^{(c)}} \cdot \underline{\mathbf{u}}_{j}.$

Benchmarks: FEM Kernel

3 channels $c \in C(i) j \in \mathcal{V}(c)$ 8 elements 8 elements

Patterns: Stencils with very high arithmetic intensity (compute bound)

3 channels $\underline{\mathbf{f}} = \sum_{i=1}^{\infty} (\mu^{(c)} \cdot \mathbf{K}^{\mu} + \underline{\lambda}^{(c)} \cdot \mathbf{K}^{\lambda})_{i^{(c)} i^{(c)}} \cdot \underline{\mathbf{u}}_{i}.$

3x8x8x3x2=1152 FLOPs/vertex



Benchmarks: FEM Kernel

4x4-Blocked Sparse Grid

Benchmarks: FEM Kernel

5-Point Stencil (Scalar)

(Simplified: actual stencil is much larger)

Benchmarks: FEM Kernel **5-Point Stencil** (4-wide Vectorized) Taichi compiler merges 4 addressing into 1, and then do a vectorized load (more details later)

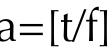
Benchmarks: FEM Kernel

5-Point Stencil (4-wide Vectorized)

Benc	hmark	KS: F	ΕN

Benchmarks: FEM Kerne							
Ablation CPU Time GPU Time							
No multithreading 73.43ms							
No vectorization 83.54ms							
No vectorized load instructions 22.69ms							
No simplification I 17.01ms 2.13 m							
No access lowering 182.19ms 6.046 m							
No simplification II 85.51ms 11.784 m							
AOS instead of SOA 136.03ms 20.992 m							
All optimizations on 17.16ms 2.11 m							

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]



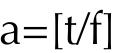
Benchmarks: FEM Kerne				
Ablation	CPU Time	GPU Time		
No simplification I	17.01ms	2.13 ms		
No access lowering	182.19ms	6.046 ms		
No simplification II	85.51ms	11.784 ms		
AOS instead of SOA	136.03ms	20.992 ms		
All ontimizations on	17 16ma	2 11 mg		

All optimizations on

Without access lowering, the backend compiler (gcc/clang/nvcc) fails to discover potential vectorized loads and reduce data access

17.16ms 2.11 ms

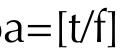
Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]



Benchmarks: FEM Kernel					
Ablation	CPU Time	GPU Time			
AOS instead of SOA	136.03ms	20.992 ms			
All optimizations on	17.16ms	2.11 ms			

Reproduce: ti fem $gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]$

AOS is really bad in this case since no vectorized ld/st low cacheline util.



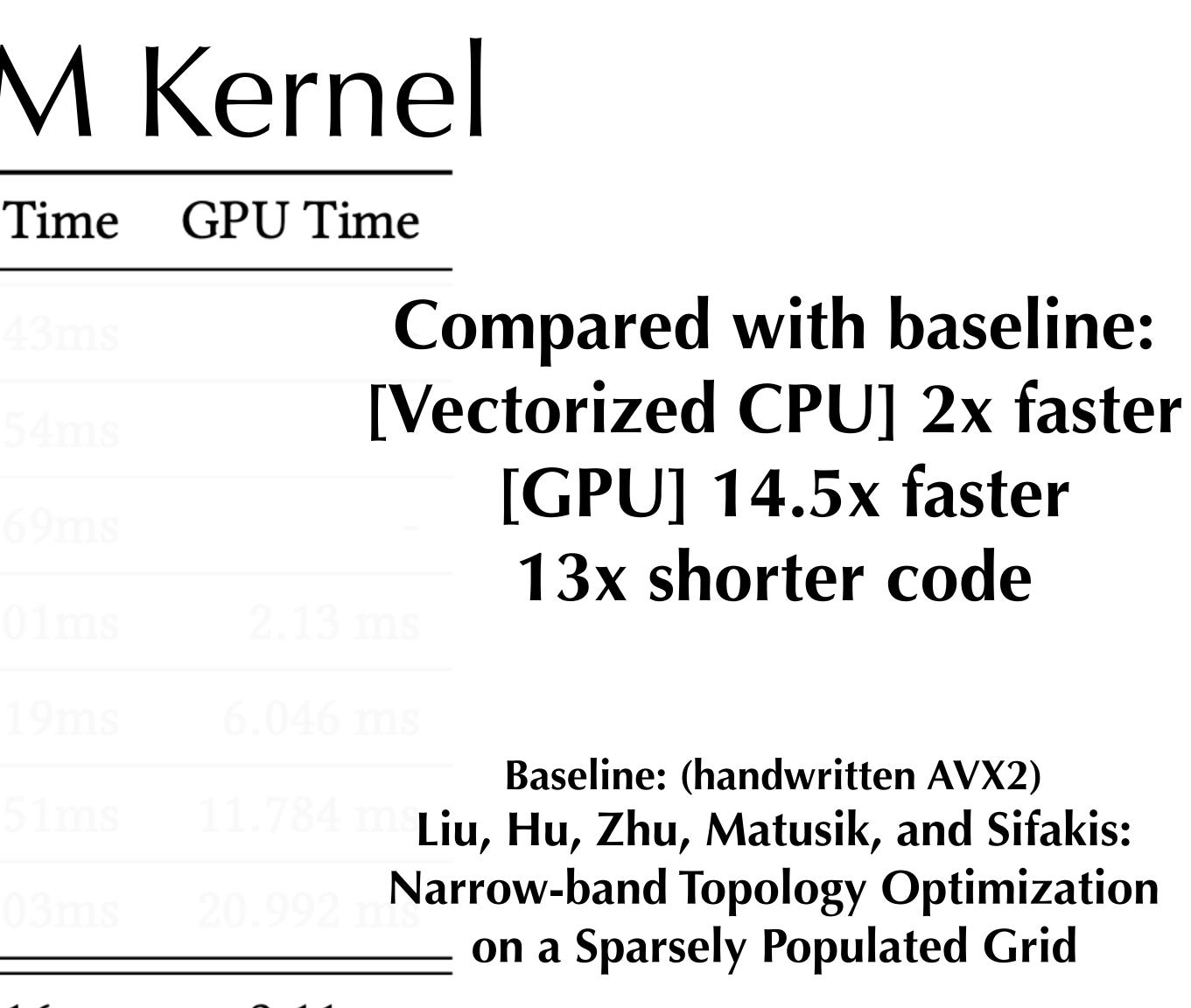
Benchmarks: FEM Kernel

Ablation

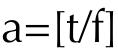
CPU Time

All optimizations on

17.16ms 2.11 ms



Reproduce: ti fem $gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]$



Vectorized FEM Access Optimization Initial IR for i in range(0, n, step 4): %1 = load voxel 1 from root %2 = load voxel 2 from root %3 = load voxel 3 from root %4 = load voxel 4 from root %9 = make vector(%1,%2,%3,%4) 2 3

Vectorized FEM Access Optimization After access lowering: for i in range(0, n, step 4): %1 = get block for voxel 1 %2 = get voxel 1 from %1 %3 = get block for voxel 2 %4 = get voxel 2 from %3 %5 = get block for voxel 3 %6 = get voxel 3 from %5 %7 = get block for voxel 4 3 2 4 %8 = get voxel 4 from %7 %9 = make_vector(%2,%4,%6,%8)

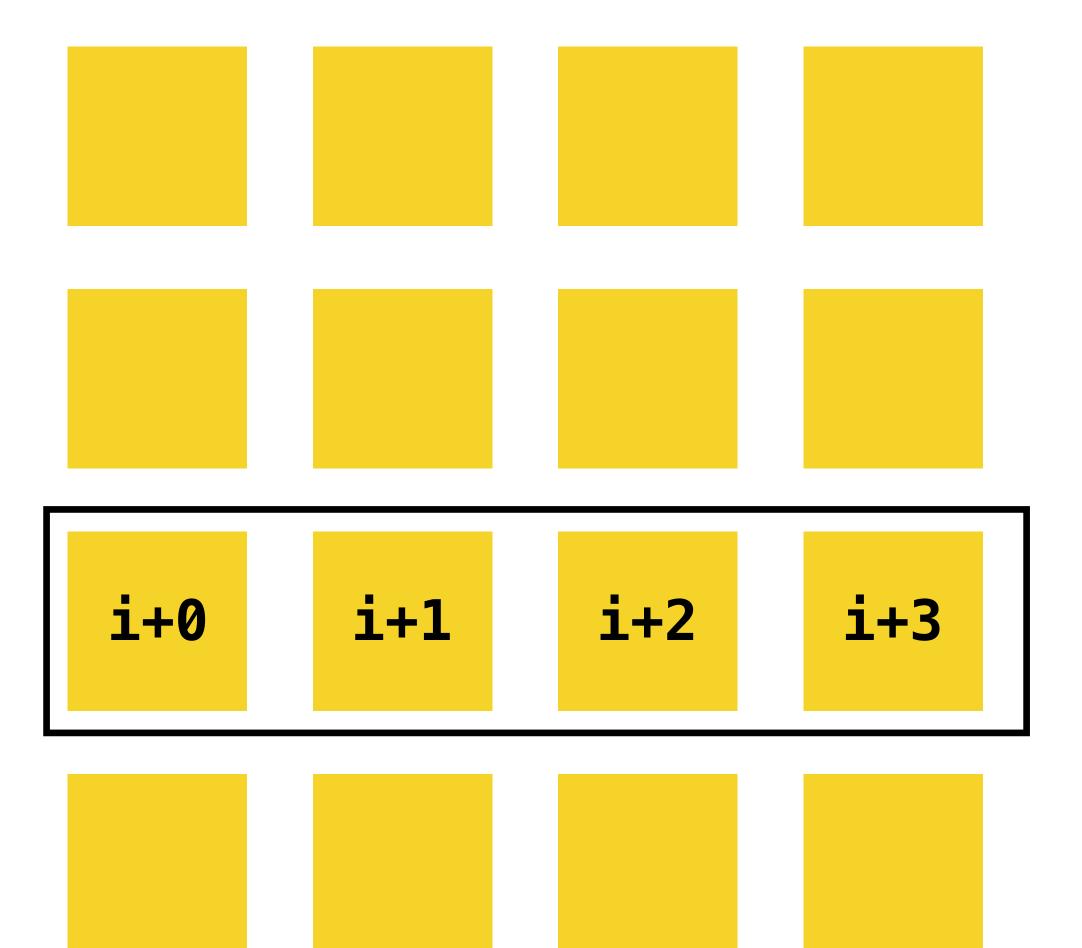
Vectorized FEM Access Optimization Index analysis for i in range(0, n, step 4): %1 = get block for voxel i+0 %2 = get voxel i+0 from %1 %3 = get block for voxel i+1%4 = get voxel i+1 from %3 %5 = get block for voxel i+2 %6 = get voxel i+2 from %5 %7 = get block for voxel i+32 3 4 %8 = get voxel i+3 from %7 %9 = make_vector(%2,%4,%6,%8)

Vectorized FEM Access Optimization With data structure info (block size=16) for i in range(0, n, step 4): %1 = get block (i+0)/16%2 = get voxel i+0 from %1 %3 = get block (i+1)/16%4 = get voxel i+1 from %3 %5 = get block (i+2)/16%6 = get voxel i+2 from %5 %7 = get block (i+3)/16 2 3 4 %8 = get voxel i+3 from %7 %9 = make_vector(%2,%4,%6,%8)

Vectorized FEM Access Optimization Index analysis (i % 4 == 0) & and integer division property: for i in range(0, n, step 4): %1 = get block(i+0)/16%2 = get voxel i+0 from %1 %3 = get block(i+0)/16%4 = get voxel i+1 from %3 %5 = get block(i+0)/16%6 = get voxel i+2 from %5 %7 = get block (i+0)/16 2 3 4 %8 = get voxel i+3 from %7 %9 = make_vector(%2,%4,%6,%8)

Vectorized FEM Access Optimization **Index analysis (i % 4 == 0) & simplification** for i in range(0, n, step 4): %1 = get block(i+0)/16%2 = get voxel i+0 from %1 %4 = get voxel i+1 from %1 %6 = get voxel i+2 from %1 %8 = get voxel i+3 from %1 $%9 = make_vector(%2,%4,%6,%8)$ 3 2

Vectorized FEM Access Optimization

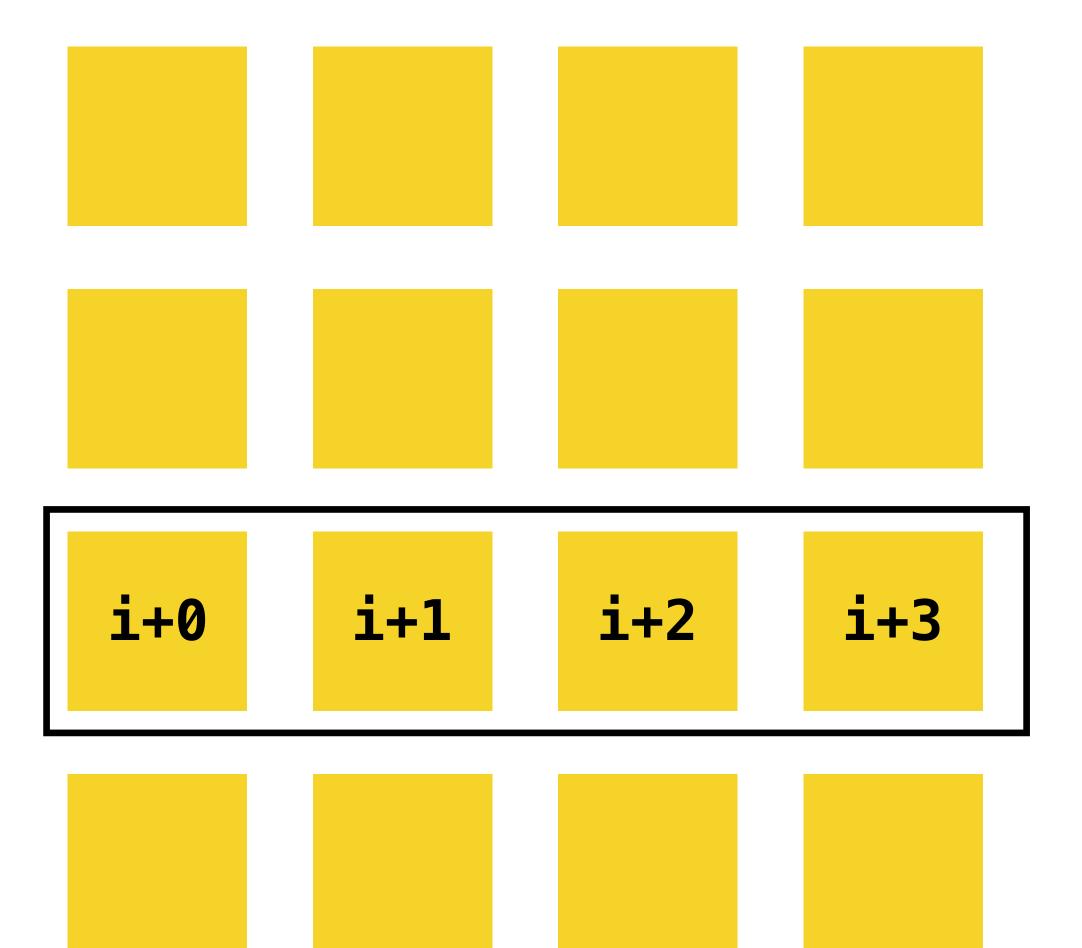


Index analysis + data structure info

for i in range(0, n, step 4): %1 = get block i/16

- %2 = get voxel i+0 within %1
- %3 = get 1st voxel right to %2
- %4 = get 2nd voxel right to %2
- %5 = get 3rd voxel right to %2
- $%9 = make_vector(%2, %3, %4, %5)$

Vectorized FEM Access Optimization



Index analysis + data structure info

for i in range(0, n, step 4): %1 = get block i/16

- %2 = get voxel i within %1
- %3 = vector_load(%2, width=4)

Reasons for Performance

Why can't traditional compilers do the optimizations?

Index analysis Instruction granularity Data access semantics

The Granularity Spectrum

x[i, j] access1(i,j) access2(i,j) = false sp = get child [S3->S sl0 = bit_extract(\$2 sl1 = linearized(ind sl2 = [S2][dense]::lo activate = false scivate = false

\$4 = [S4][root]::lookup(root, \$3) coord = {\$2} activate = false \$5 = get child [S4->S3] \$4 \$6 = bit_extract(\$2 + 0, 7~14) \$7 = linearized(ind {\$6}, stride {128}) \$8 = [S3][dense]::lookup(\$5, \$7) coord = {\$2} a = false \$9 = get child [S3->S2] \$8 \$10 = bit_extract(\$2 + 0, 0~7) \$11 = linearized(ind {\$10}, stride {128}) \$12 = [S2][dense]::lookup(\$9, \$11) coord = {\$2}

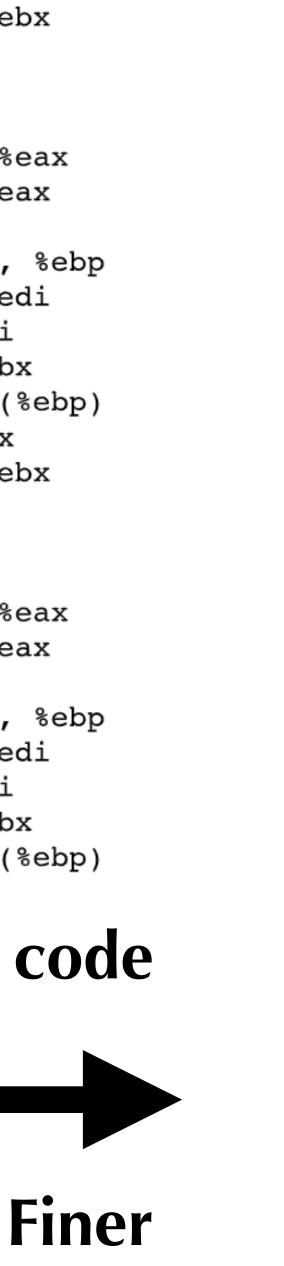
Taichi IR

```
%63 = lshr i32 %62, 0
%64 = and i32 %63, 255
\%65 = add i32 \%37, 0
%66 = lshr i32 %65, 0
%67 = and i32 %66, 255
\%68 = add i32 0, \%64
%69 = mul i32 %68, 256
%70 = add i32 %69, %67
%71 = bitcast %struct.DenseMeta* %5 tc
call void @StructMeta_set_snode_id(%st
call void @StructMeta_set_element_siz@
call void @StructMeta_set_max_num_eler
call void @StructMeta_set_lookup_elem@
_element)
call void @StructMeta_set_is_active(%:
call void @StructMeta_set_get_num_eler
lements)
call void @StructMeta_set_from_parent_
```

LLVM IR

movl \$0, %eax addl %eax, %ebx popl %eax looptop: imul %edx andl \$0xFF, %eax cmpl \$100, %eax jb looptop leal 4(%esp), %ebp movl %esi, %edi subl \$8, %edi shrl %cl, %ebx movw bx, -2(bp)movl \$0, %eax addl %eax, %ebx popl %eax looptop: imul %edx andl \$0xFF, %eax cmpl \$100, %eax jb looptop leal 4(%esp), %ebp movl %esi, %edi subl \$8, %edi shrl %cl, %ebx movw bx, -2(bp)

Machine code



Hidden Optimization Opportunities

End2end access Level-wise Access Taichi IR LLVM IR Machine code

Coarser

Analysis Difficulty

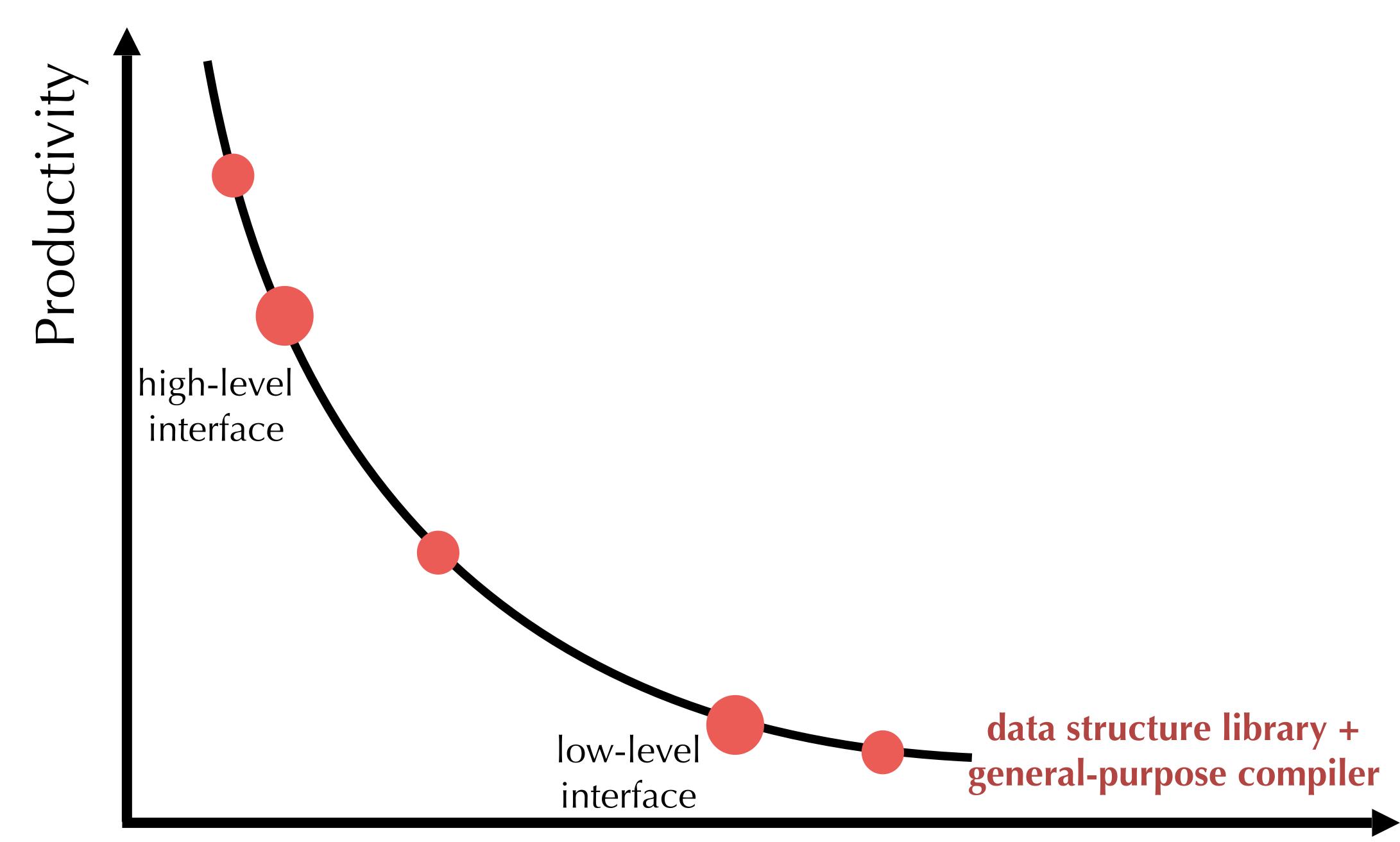
4

Data Access Semantics

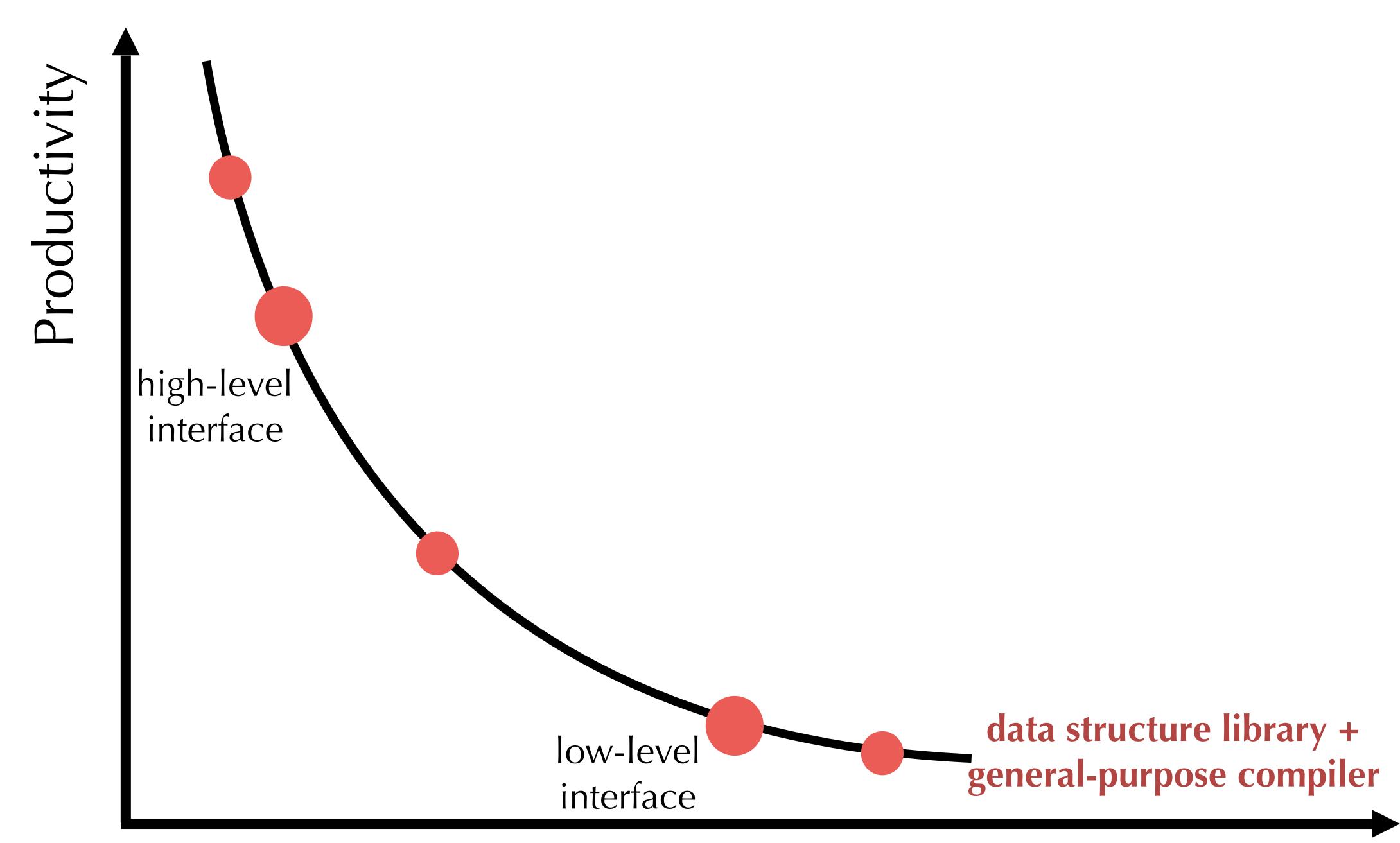
- + (Seemingly trivial) assumptions that enables compiler optimization:

 - accesses of form **sparse_grid**[indices]
 - Read access does not modify anything
 - No memory allocation
 - No exception if out of ranges (element does not exist)

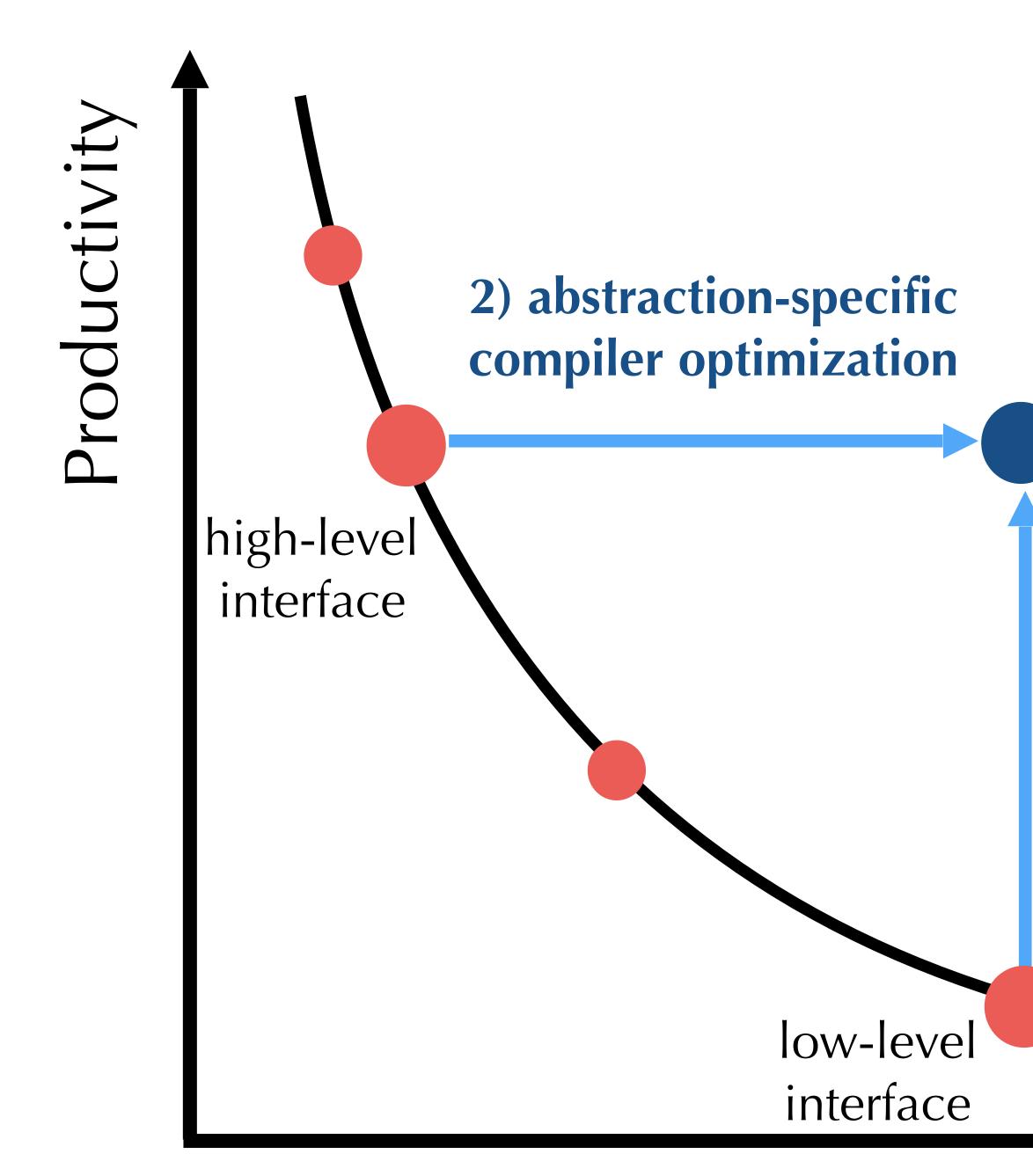
• No pointer aliasing: $\mathbf{a}[x, y]$ and $\mathbf{b}[i, j]$ never overlaps if a != b• All memory accesses are done through **sparse_grid**[indices] • The only way data structures get modified, is through write



Performance



Performance

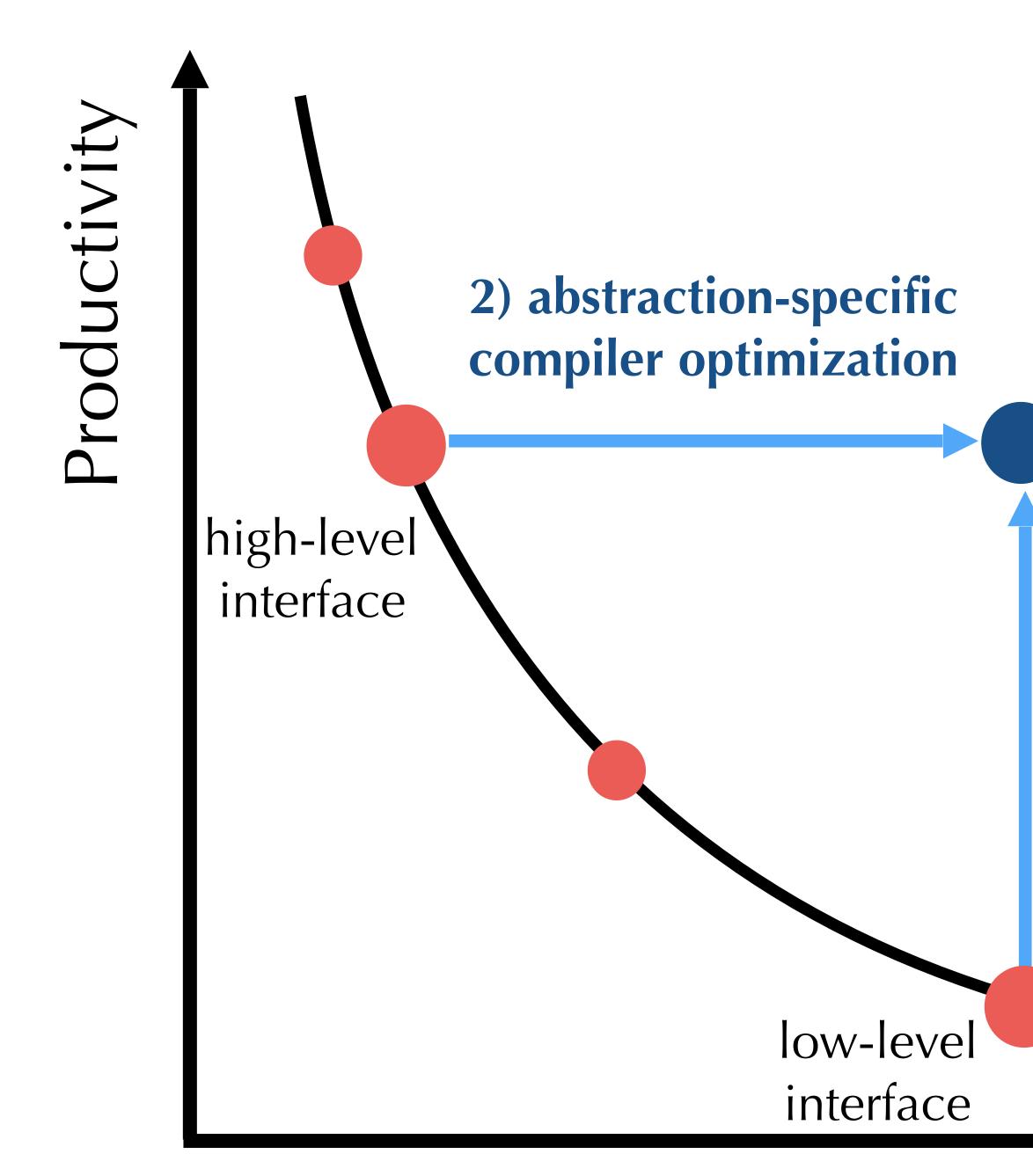


Performance

data structure library +

general-purpose compiler

1) data structure abstraction



*Taichi:***10.0x** shorter code**4.55x** higher performance

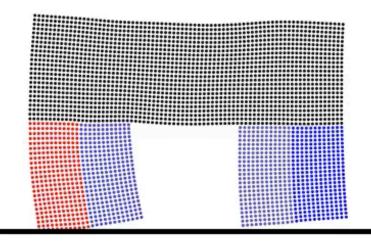
3) algorithm data structure decoupling

1) data structure abstraction

data structure library + general-purpose compiler

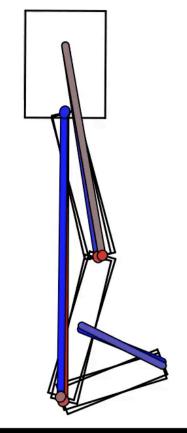
Performance

DiffTaichi: **Differentiable Programming for Physical Simulation**

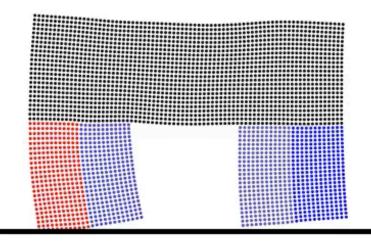


End2end optimization of neural network controllers with gradient descent

(Advertisement)

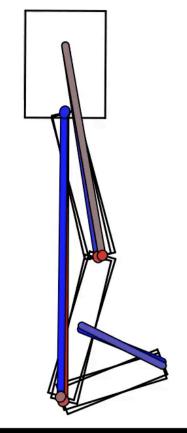


DiffTaichi: **Differentiable Programming for Physical Simulation**



End2end optimization of neural network controllers with gradient descent

(Advertisement)



Source code: <u>https://github.com/yuanming-hu/taichi</u>

All performance numbers from our system are reproducible (commit dc162e11) with a single command.

Thank you!

The End

pip3 install taichi-nightly

