
High-Performance Computation on
Spatially Sparse Data Structures

Yuanming Hu1 Tzu-Mao Li2 Luke Anderson1 Jonathan Ragan-Kelley2
Fredo Durand1

1MIT CSAIL 2UC Berkeley

3 million particles
simulated with MLS-MPM;
rendered with path tracing.

Using programs written in Taichi.

3 million particles
simulated with MLS-MPM;
rendered with path tracing.

Using programs written in Taichi.

Bounding Volume

Bounding Volume

Region of Interest

Bounding Volume

Spatial Sparsity:
Regions of interest only occupy a small fraction of

the bounding volume.

Region of Interest

globally sparse, locally dense

globally sparse, locally dense

VDB [Museth 2013]

Shallow Multi-Level Sparse Voxel Grids

SPGrid

[Setaluri, Aanjaneya, Bauer, and Sifakis, SIGGRAPH Asia 2014]
SPGrid: A sparse paged grid structure applied to adaptive smoke simulation

Even shallower sparse grid system
• Virtual Memory

• Morton Coding

• Bitmasks

Particles 1x1x1

4x4x4 16x16x16

Particles 1x1x1

4x4x4 16x16x16

Using Sparse Data Structures is Hard

Parallelization & Load Balancing

Memory Management

Maintaining Topology

Boundary Conditions

Data Structure Overhead

…

Using Sparse Data Structures is Hard

Parallelization & Load Balancing

Memory Management

Maintaining Topology

Boundary Conditions

Data Structure Overhead

…

10%

90%

Essential Computation
Data Structure Overhead

Ideally…

90%

10%

Essential Computation
Data Structure Overhead

In reality…

99%

1%

Essential Computation
Data Structure Overhead

In reality…

99%

1%

Essential Computation
Data Structure Overhead

In reality…

99%

1%

Essential Computation
Data Structure Overhead

In reality…

Hash table lookup: 10s of clock cycles
Indirection: cache/TLB misses
Node allocation: locks, atomics, barriers
Branching: misprediction / warp divergence
…

99%

1%

Essential Computation
Data Structure Overhead

In reality…

Hash table lookup: 10s of clock cycles
Indirection: cache/TLB misses
Node allocation: locks, atomics, barriers
Branching: misprediction / warp divergence
…

Low-level engineering reduces data
structure overhead, but harms
productivity and couples algorithms
and data structures, making it difficult to
explore different data structure designs
and find the optimal one.

Data structure access:
๏ 50 clock cycles / element

Simple Stencil Computation:
๏ 0.5 clock cycle / element

Sparse data structure overhead can be
100x higher than essential computation

Data structure access:
๏ 50 clock cycles / element

Simple Stencil Computation:
๏ 0.5 clock cycle / element

Sparse data structure overhead can be
100x higher than essential computation

Data structure access:
๏ 50 clock cycles / element

Simple Stencil Computation:
๏ 0.5 clock cycle / element

Fun fact: without low-level engineering, dense data
structures are often faster for problems with >10% sparsity

Data Accesses Drawn Proportionally…

Dense Data Structure

Array addressing

Ti
m

e
(c

lo
ck

 c
yc

le
s)

Data Accesses Drawn Proportionally…

Dense Data Structure

Array addressing

Ti
m

e
(c

lo
ck

 c
yc

le
s)

Data Accesses Drawn Proportionally…

Dense Data Structure

Array addressing

Ti
m

e
(c

lo
ck

 c
yc

le
s)

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Data Accesses Drawn Proportionally…
Ti

m
e

(c
lo

ck
 c

yc
le

s)

Sparse Data Structure

Hash table access

Array addressing

Reducing redundant data access is the key to high-performance
spatially sparse computation!

Traditional Sparse Computation Workflow

1. Choose a sparse data structure library

2. Implement the algorithm on that sparse data structure

3. Do low-level engineering to optimize for performance
• Code is complex and coupled with the data structure library

Traditional Sparse Computation Workflow

1. Choose a sparse data structure library

2. Implement the algorithm on that sparse data structure

3. Do low-level engineering to optimize for performance
• Code is complex and coupled with the data structure library
• “Oh no, this data structure isn’t really optimal for this algorithm”

start over

Ideal Sparse Computing Workflow

1. Implement the algorithm as if all grids are dense

2. Describe your data structure

3. The compiler optimizes performance
• Benchmark performance, and try different data structures

Ideal Sparse Computing Workflow

1. Implement the algorithm as if all grids are dense

2. Describe your data structure

3. The compiler optimizes performance
• Benchmark performance, and try different data structures

Related work: split languages,
e.g., Halide [Ragan-Kelley, Adams, Paris, Levoy, Amarasinghe, Durand. SIGGRAPH 2012]

Our Solution:

The Taichi Programming Language

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

2D Laplace operator

2) Imperative computation
language

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

10242 sparse grid with 82

3) Hierarchical data
structure description

language

2D Laplace operator

2) Imperative computation
language

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

IR
&

Optimizing
Compiler

4) Intermediate
representation (IR) &

data structure
access optimizations

10242 sparse grid with 82

3) Hierarchical data
structure description

language

2D Laplace operator

2) Imperative computation
language

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

IR
&

Optimizing
Compiler

4) Intermediate
representation (IR) &

data structure
access optimizations

10242 sparse grid with 82

3) Hierarchical data
structure description

language

2D Laplace operator

2) Imperative computation
language Runtime System

5) Auto parallelization,
memory management, …

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

IR
&

Optimizing
Compiler

4) Intermediate
representation (IR) &

data structure
access optimizations

10242 sparse grid with 82

3) Hierarchical data
structure description

language

High-Performance CPU/GPU Kernels
Ours v.s. State-of-the-art:

MLS-MPM 13x shorter code, 1.2x faster
FEM Kernel 13x shorter code, 14.5x faster
MGPCG 7x shorter code, 1.9x faster
Sparse CNN 9x shorter code, 13x faster2D Laplace operator

2) Imperative computation
language Runtime System

5) Auto parallelization,
memory management, …

Our Solution:

The Taichi Programming Language

(Sparse) Data StructuresComputational Kernels

1) Decouple computation from data structures

IR
&

Optimizing
Compiler

4) Intermediate
representation (IR) &

data structure
access optimizations

10242 sparse grid with 82

3) Hierarchical data
structure description

language

High-Performance CPU/GPU Kernels
Ours v.s. State-of-the-art:

MLS-MPM 13x shorter code, 1.2x faster
FEM Kernel 13x shorter code, 14.5x faster
MGPCG 7x shorter code, 1.9x faster
Sparse CNN 9x shorter code, 13x faster2D Laplace operator

2) Imperative computation
language Runtime System

5) Auto parallelization,
memory management, …

10x shorter code, 4.55x faster

Defining Computation

• Program on sparse data structures as if they are dense;
• Parallel for-loops (Single-Program-Multiple-Data, like CUDA/ispc);
• Loop over only active elements in the sparse data structure;
• Complex control flows (e.g. If, While) supported.

Taichi Kernel

Finite Difference Stencil

Describing Data Structures

Structural Nodes Node Decorators

Describing Data Structures

Structural Nodes Node Decorators

Describing Data Structures

VDB [Museth 2013] SPGrid [Setaluri et al. 2014]

Structural Nodes Node Decorators

Describing Data Structures

VDB [Museth 2013] SPGrid [Setaluri et al. 2014]

“SPVDB”

Structural Nodes Node Decorators

Bounded sparse grid structure

Bounded sparse grid structure

Unbounded sparse grid structure

Unbounded sparse grid structure

based on computation and data structure info

Access Simplification

Access Simplification

Root2leaf (end2end) data access

micro-access instructions

Simplified micro-access instructions

Access lowering

“Common subexpression elimination”

Access Simplification

More optimizations:
• shared memory utilization on GPUs;
• avoid unnecessary activation checks;
• better vectorized loads on CPUs;
• …

Removing redundant data structure traversals

3.02x faster

Results
10.0x shorter code

4.55x higher performance

High-Performance CPU/GPU Kernels
Ours v.s. State-of-the-art:

MLS-MPM 13x shorter code, 1.2x faster
FEM Kernel 13x shorter code, 14.5x faster
MGPCG 7x shorter code, 1.9x faster
Sparse CNN 9x shorter code, 13x faster

Benchmarks: MLS-MPM
Particle to Grid (P2G)

Grid to Particle (G2P)

Patterns: Particle scatter/gather

Benchmarks: MLS-MPM
Particle to Grid (P2G)

Grid to Particle (G2P)

Patterns: Particle scatter/gather

Benchmarks: MLS-MPM

Reproduce: ti mpm_benchmark particle_soa=[true/false] initial_shuffle=[true/false]

AOS much faster than SOA for random access!
No sorting needed.

Reproduce: ti mpm_benchmark use_cache=[true/false]

Benchmarks: MLS-MPM
The use of scratch pad memory [NVIDIA shared memory]

Group particles into blocks
& scatter/gather

Reproduce: ti mpm_benchmark use_cache=[true/false]

Benchmarks: MLS-MPM
The use of scratch pad memory [NVIDIA shared memory]

2-3x faster using
shared memory

Index analysis for
scratchpad memory

size inference

Group particles into blocks
& scatter/gather

Benchmarks: MLS-MPM

Reproduce: ti mpm_benchmark particle_soa=[true/false] initial_shuffle=[true/false]

Compared with baseline [Gao et al.]:
[GPU] 1.2x faster
13x shorter code

Benchmarks: FEM Kernel

Benchmarks: FEM Kernel

Patterns: Stencils with very high arithmetic intensity (compute bound)

8 elements 8 elements

3 channels 3 channels

3x8x8x3x2=1152 FLOPs/vertex

Benchmarks: FEM Kernel

4x4-Blocked
Sparse Grid

Benchmarks: FEM Kernel

5-Point Stencil
(Scalar)

(Simplified: actual
stencil is much larger)

Benchmarks: FEM Kernel

5-Point Stencil
(4-wide Vectorized)

Taichi compiler merges
4 addressing into

1, and then do a vectorized load
(more details later)

Benchmarks: FEM Kernel

5-Point Stencil
(4-wide Vectorized)

Benchmarks: FEM Kernel

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]

Without access lowering,
the backend compiler

(gcc/clang/nvcc)
fails to discover

potential vectorized loads
and reduce data access

Benchmarks: FEM Kernel

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]

Benchmarks: FEM Kernel

AOS is really bad
in this case since

1) no vectorized ld/st
2) low cacheline util.

Benchmarks: FEM Kernel

Compared with baseline:
[Vectorized CPU] 2x faster

 [GPU] 14.5x faster
13x shorter code

Baseline: (handwritten AVX2)
Liu, Hu, Zhu, Matusik, and Sifakis:

Narrow-band Topology Optimization
on a Sparsely Populated Grid

Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8] lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]

Vectorized FEM Access Optimization

1 2 3 4

for i in range(0, n, step 4):
 %1 = load voxel 1 from root
 %2 = load voxel 2 from root
 %3 = load voxel 3 from root
 %4 = load voxel 4 from root
 %9 = make_vector(%1,%2,%3,%4)

Initial IR

1 2 3 4

for i in range(0, n, step 4):
 %1 = get block for voxel 1
 %2 = get voxel 1 from %1
 %3 = get block for voxel 2
 %4 = get voxel 2 from %3
 %5 = get block for voxel 3
 %6 = get voxel 3 from %5
 %7 = get block for voxel 4
 %8 = get voxel 4 from %7
 %9 = make_vector(%2,%4,%6,%8)

After access lowering:

Vectorized FEM Access Optimization

1 2 3 4

for i in range(0, n, step 4):
 %1 = get block for voxel i+0
 %2 = get voxel i+0 from %1
 %3 = get block for voxel i+1
 %4 = get voxel i+1 from %3
 %5 = get block for voxel i+2
 %6 = get voxel i+2 from %5
 %7 = get block for voxel i+3
 %8 = get voxel i+3 from %7
 %9 = make_vector(%2,%4,%6,%8)

Index analysis

Vectorized FEM Access Optimization

1 2 3 4

for i in range(0, n, step 4):
 %1 = get block (i+0)/16
 %2 = get voxel i+0 from %1
 %3 = get block (i+1)/16
 %4 = get voxel i+1 from %3
 %5 = get block (i+2)/16
 %6 = get voxel i+2 from %5
 %7 = get block (i+3)/16
 %8 = get voxel i+3 from %7
 %9 = make_vector(%2,%4,%6,%8)

With data structure info (block size=16)

Vectorized FEM Access Optimization

1 2 3 4

for i in range(0, n, step 4):
 %1 = get block (i+0)/16
 %2 = get voxel i+0 from %1
 %3 = get block (i+0)/16
 %4 = get voxel i+1 from %3
 %5 = get block (i+0)/16
 %6 = get voxel i+2 from %5
 %7 = get block (i+0)/16
 %8 = get voxel i+3 from %7
 %9 = make_vector(%2,%4,%6,%8)

Index analysis (i % 4 == 0) &
and integer division property:

Vectorized FEM Access Optimization

1 2 3 4

for i in range(0, n, step 4):
 %1 = get block (i+0)/16
 %2 = get voxel i+0 from %1
 %4 = get voxel i+1 from %1
 %6 = get voxel i+2 from %1
 %8 = get voxel i+3 from %1
 %9 = make_vector(%2,%4,%6,%8)

Index analysis (i % 4 == 0) & simplification

Vectorized FEM Access Optimization

for i in range(0, n, step 4):
 %1 = get block i/16
 %2 = get voxel i+0 within %1
 %3 = get 1st voxel right to %2
 %4 = get 2nd voxel right to %2
 %5 = get 3rd voxel right to %2
 %9 = make_vector(%2,%3,%4,%5)

i+0 i+1 i+2 i+3

Index analysis + data structure info

Vectorized FEM Access Optimization

for i in range(0, n, step 4):
 %1 = get block i/16
 %2 = get voxel i within %1
 %3 = vector_load(%2, width=4)

i+0 i+1 i+2 i+3

Index analysis + data structure info

Vectorized FEM Access Optimization

Reasons for Performance

Why can’t traditional compilers do the
optimizations?

1) Index analysis
2) Instruction granularity
3) Data access semantics

The Granularity Spectrum

FinerCoarser

LLVM IR Machine codeEnd2end access Level-wise Access Taichi IR

x[i, j]
access1(i,j)
access2(i,j)

FinerCoarser

LLVM IR Machine codeEnd2end access Level-wise Access Taichi IR

Analysis Difficulty
Hidden Optimization

Opportunities

Data Access Semantics
✦ (Seemingly trivial) assumptions that enables compiler

optimization:
๏ No pointer aliasing: a[x, y] and b[i, j] never overlaps if a != b
๏ All memory accesses are done through sparse_grid[indices]
๏ The only way data structures get modified, is through write

accesses of form sparse_grid[indices]
๏ Read access does not modify anything
‣ No memory allocation
‣ No exception if out of ranges (element does not exist)

Performance

Pr
od

uc
tiv

ity

low-level
interface

high-level
interface

data structure library +
general-purpose compiler

Performance

Pr
od

uc
tiv

ity

low-level
interface

high-level
interface

data structure library +
general-purpose compiler

2) abstraction-specific
compiler optimization

1) data structure
abstraction

Performance

Pr
od

uc
tiv

ity

low-level
interface

high-level
interface

data structure library +
general-purpose compiler

3) algorithm
data structure

decoupling

Taichi:
10.0x shorter code
4.55x higher performance2) abstraction-specific

compiler optimization

1) data structure
abstraction

Performance

Pr
od

uc
tiv

ity

low-level
interface

high-level
interface

data structure library +
general-purpose compiler

(Advertisement)

DiffTaichi:
Differentiable Programming for Physical Simulation

End2end optimization of neural network controllers with gradient descent

(Advertisement)

DiffTaichi:
Differentiable Programming for Physical Simulation

End2end optimization of neural network controllers with gradient descent

The End
Source code: https://github.com/yuanming-hu/taichi

pip3 install taichi-nightly
All performance numbers from our system are

reproducible (commit dc162e11) with a single command.

Thank you!

https://github.com/yuanming-hu/taichi

