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Abstract

Physical simulators have been widely used in robot planning and control. Among them,
differentiable simulators are particularly favored, as they can be incorporated into
gradient-based optimization algorithms that are efficient in solving inverse problems
such as optimal control and motion planning. Simulating deformable objects is,
however, more challenging compared to rigid body dynamics. The underlying physical
laws of deformable objects are more complex, and the resulting systems have orders
of magnitude more degrees of freedom and therefore they are significantly more
computationally expensive to simulate. Computing gradients with respect to physical
design or controller parameters is typically even more computationally challenging. In
this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical
simulator for deformable objects, ChainQueen, based on the Moving Least Squares
Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects
including contact and can be seamlessly incorporated into inference, control and
co-design systems. We demonstrate that our simulator achieves high precision in
both forward simulation and backward gradient computation. We have successfully
employed it in a diverse set of control tasks for soft robots, including problems with
nearly 3, 000 decision variables.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Robot planning and control algorithms often rely on physical simulators for prediction

and optimization [32, 6]. In particular, differentiable physical simulators enable the use

of gradient-based optimizers, significantly improving control efficiency and precision.

Motivated by this, there has been extensive research on differentiable rigid body

simulators, using approximate [2, 24] and exact [5, 31, 8] methods.

Significant challenges remain for deformable objects. First, simulating the motion

of deformable objects is slow, because they have much higher degrees of freedom

(DoFs). Second, contact detection and resolution is challenging for deformable objects,

due to their changing geometries and potential self-collisions. Third, closed-form and

efficient computation of gradients is challenging in the presence of contact. As a

consequence, current simulation methods for soft objects cannot be effectively used

for solving inverse problems such as optimal control and motion planning.

In this work, we introduce a real-time, differentiable physical simulator for de-

formable objects, building upon the Moving Least Squares Material Point Method

(MLS-MPM) [16]. We name our simulator ChainQueen*. The Material Point Method

(MPM) is a hybrid Lagrangian-Eulerian method that uses both particles and grid

nodes for simulation [29]. MLS-MPM accelerates and simplifies traditional MPM

using a moving least squares force discretization. In ChainQueen, we introduce the

first fully differentiable MLS-MPM simulator with respect to both state and model

*Or 乾坤 , literally “everything between the sky and the earth.”
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parameters, with both forward simulation and back-propagation running efficiently

on GPUs. We demonstrate the ability to efficiently calculate gradients with respect

to the entire simulation. This enables many novel applications for soft robotics in-

cluding optimization-based closed-loop controller design, trajectory optimization, and

co-design of robot geometry, materials, and control.

As a particle-grid-based hybrid simulator, MPM simulates objects of various states,

such as liquid (e.g., water), granular materials (e.g., sand), and elastoplastic materials

(e.g., snow and human tissue). ChainQueen focuses on elastic materials for soft

robotics. It is fully differentiable and 4 − 9× faster than the current state of the

art. Numerical and experimental validation suggest that ChainQueen achieves high

precision in both forward simulation and backward gradient computation.

ChainQueen’s differentiability allows it to support gradient-based optimization

for control and system identification. By performing gradient descent on controller

parameters, our simulator is capable of solving these inverse problems on a diverse set

of complex tasks, such as optimizing a 3D soft walker controller given an objective.

Similarly, gradient descent on physical design parameters, enables inference of physical

properties (e.g. mass, density and Young’s modulus) of objects and optimizing design

for a desired task.

In addition to benchmarking ChainQueen’s performance and demonstrating its

capabilities on a diverse set of inverse problems, we have interfaced our simulator with

high-level python scripts to make ChainQueen user-friendly. Users at all levels will be

able to develop their own soft robotics systems using our simulator, without the need

to understand its low-level details. We will open-source our code and data and we

hope they can benefit the robotics community.
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Chapter 2

Related Work

2.1 Material Point Method

The material point method has been extensively developed from both a solid mechan-

ics [29] and computer graphics [19] perspective. As a hybrid Eulerian-Langrangian

method, MPM has demonstrated its versatility in simulating snow [28, 12], sand [21, 3],

non-Newtonion fluids [25], cloth [18, 13], solid-fluid coupling [9, 30], rigid body cou-

pling, and cutting [16]. [10] also proposed an adaptive MPM scheme to concentrate

computation resources in the regions of interest.

There are many benefits of using MPM for soft robotics. First, MPM is a well-

founded and physically-accurate discretization method and can be derived through

the weak form of conservation laws. Such a physically based approach makes it

easier to match simulation with real-world experiments. Second, MPM is friendly to

parallelization on modern hardware architectures. Closely related to our work is a

high-performance GPU implementation [11] by Gao et al., from which we borrow many

useful optimization practices. Though efficient when solving forward simulation, their

simulator is not differentiable, making it inefficient for inverse problems in robotics and

learning. Third, MPM naturally handles large deformation and (self-)collision, which

are common in soft robotics, but often not modeled in, e.g., mesh-based approaches

due to computational expense. Finally, the continuum dynamics (including soft object

collision) are governed by the smooth (and differentiable) potential energy, making

15



the whole system differentiable.

Our simulator, ChainQueen, is fully differentiable and the first simulator that

applies MPM to soft robotics.

2.2 Differentiable Simulation and Control

Recently, there has been an increasing interest in building differentiable simulators for

planning and control. For rigid bodies, [1], [2] and [24] proposed to approximate object

interaction with neural nets; later, [26] explored their usage in control. Approximate

analytic differentiable rigid body simulators have also been proposed [5, 4]. Such

systems have been deployed for manipulation and planning [33].

Differentiable simulators for deformable objects have been less studied. Recently,

[27] proposed SPNets for differentiable simulation of position-based fluids [22]. The

particle interactions are coded as neural network operations and differentiability is

achieved via automatic differentiation in PyTorch. A hierarchical particle-based object

representation using neural networks is also proposed in [24]. Instead of approximating

physics using neural networks, ChainQueen differentiates MLS-MPM, a well physically

founded discretization scheme derived from continuum mechanics. In summary, our

simulator can be used for a more diverse set of objects; it is more physically plausible,

and runs faster.
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Chapter 3

Background: The Moving Least

Squares Material Point Method

In this chapter, we provide some background on the material point method (MPM),

which is used for forward simulation.

We use the moving least squares material point method (MLS-MPM) [16] to

discretize continuum mechanics, which is governed by the following two equations:

𝜌
𝐷v

𝐷𝑡
= ∇ · 𝜎 + 𝜌g (momentum conservation), (3.1)

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · v = 0 (mass conservation). (3.2)

MLS-MPM is a simpler and more efficient variant of classical MPM. The simplicity

of MLS-MPM has greatly reduced the work needed to differentiate it. Here we

briefly cover the basics of MLS-MPM and readers are referred to [19] and [16] for a

comprehensive introduction of MPM and MLS-MPM, respectively.

The material point method is a hybrid Eulerian-Lagrangian method, where both

particles and grid nodes are used. Simulation state information is transferred back-

and-forth between these two representations. We summarize the notations we use in

this paper in Table 3.1. Subscripts are used to denote particle (𝑝) and grid nodes (𝑖),

while superscripts (𝑛, 𝑛+ 1) are used to distinguish quantities in different time steps.

The MLS-MPM simulation cycle has three steps:

17



Table 3.1: List of notations for MLS-MPM.

Symbol Type Affiliation Meaning

∆𝑡 scalar time step size
∆𝑥 scalar grid cell size
x𝑝 vector particle position
𝑉 0
𝑝 scalar particle initial volume
v𝑝 vector particle velocity
C𝑝 matrix particle affine velocity field [17]
P𝑝 matrix particle PK1 stress (𝜕𝜓𝑝/𝜕F𝑝)
𝜎𝑝𝑎 matrix particle actuation Cauchy stress
A𝑝 matrix particle actuation stress (material space)
F𝑝 matrix particle deformation gradient
x𝑖 vector node position
𝑚𝑖 scalar node mass
v𝑖 vector node velocity
p𝑖 vector node momentum, i.e. 𝑚𝑖v𝑖

𝑁 scalar quadratic B-spline function

1. Particle-to-grid transfer (P2G). Particles transfer mass 𝑚𝑝, momentum

(𝑚v)𝑛𝑝 , and stress-contributed impulse to their neighbouring grid nodes, using

the Affine Particle-in-Cell method (APIC) [17] and moving least squares force

discretization [16], weighted by a compact B-spline kernel 𝑁 :

𝑚𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )𝑚𝑝, (3.3)

G𝑛
𝑝 = − 4

∆𝑥2
∆𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝 , (3.4)

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︀
𝑚𝑝v

𝑛
𝑝 + G𝑛

𝑝 (x𝑖 − x𝑛
𝑝 )
]︀
. (3.5)

2. Grid operations. Grid momentum is normalized into grid velocity after division

by grid mass:

v𝑛
𝑖 =

1

𝑚𝑛
𝑖

p𝑛
𝑖 . (3.6)

Note that neighbouring particles interact with each other through their shared

grid nodes, and collisions are handled automatically. Here we omit boundary

18



P2G Grid op. G2P

G2P
gradients

(backward P2G)

Grid op.
gradients

……

P2G
gradients

(backward G2P)

particle states at grid momentum grid velocity particle states at tn tn+1

Figure 3-1: One time step of MLS-MPM. Top arrows are for forward simulation and
bottom ones are for back propagation. A controller is embedded in the P2G process
to generate actuation given particle configurations.

conditions and gravity for simplicity. Boundary conditions are usually applied

as a projection on grid node velocity.

3. Grid-to-particle transfer (G2P). Particles gather updated velocity v𝑛+1
𝑝 ,

local velocity field gradients C𝑛+1
𝑝 and position x𝑛+1

𝑝 form neighbouring grid

nodes. At the same time, the constitutive model properties (for example,

deformation gradients F𝑛+1
𝑝 ) are updated. MLS-MPM unifies the local velocity

gradient computation and affine velocity field computation, leading to higher

efficiency and simplicity.

v𝑛+1
𝑝 =

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v𝑛

𝑖 , (3.7)

C𝑛+1
𝑝 =

4

∆𝑥2

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v𝑛

𝑖 (x𝑖 − x𝑛
𝑝 )𝑇 , (3.8)

F𝑛+1
𝑝 = (I + ∆𝑡C𝑛+1

𝑝 )F𝑛
𝑝 , (3.9)

x𝑛+1
𝑝 = x𝑛

𝑝 + ∆𝑡v𝑛+1
𝑝 . (3.10)

For soft robotics, we additionally introduce an actuation model. Inspired by

actuators such as [14], we designed an actuation model that expands or stretches

particle 𝑝 via an additional Cauchy stress A𝑝 = F𝑝𝜎𝑝𝑎F
𝑇
𝑝 , with 𝜎𝑝𝑎 = Diag(𝑎𝑥, 𝑎𝑦, 𝑎𝑧)

– the stress in the material space. This framework supports the use of other actuation

models including pneumatic, hydraulic, and cable-driven actuators. Fig. 3-1 illustrates

19



forward simulation, and back propagation, which we will introduce in the next chapter.
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Chapter 4

The Differentiable Moving Least

Squares Material Point Method

MLS-MPM is naturally differentiable. Although the forward MPM simulation has
been extensively used in computer graphics, the backward direction (differentiation
or back-propagation) is largely unexplored. The backward gradients can be derived
given forward simulation relationships. Here we show the gradients of x𝑛

𝑝 based on

21



forward simulation, as an example:

x𝑛+1
𝑝 = x𝑛

𝑝 +Δ𝑡v𝑛+1
𝑝 (4.1)

v𝑛+1
𝑝 =

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (4.2)

C𝑛+1
𝑝 =

4

Δ𝑥2

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (x𝑖 − x𝑛

𝑝 )
𝑇 (4.3)

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(4.4)

𝑚𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )𝑚𝑝 (4.5)

G𝑝 :=

(︂
− 4

Δ𝑥2
𝑉 0
𝑝 Δ𝑡P

𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(4.6)

=⇒ (4.7)

𝜕𝐿

𝜕x𝑛
𝑝𝛼

=

[︃
𝜕𝐿

𝜕x𝑛+1
𝑝

𝜕x𝑛+1
𝑝

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕v𝑛+1
𝑝

𝜕v𝑛+1
𝑝

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕C𝑛+1
𝑝

𝜕C𝑛+1
𝑝

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕p𝑛
𝑖

𝜕p𝑛
𝑖

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕𝑚𝑛
𝑖

𝜕𝑚𝑛
𝑖

𝜕x𝑛
𝑝

]︃
𝛼

(4.8)

=
𝜕𝐿

𝜕x𝑛+1
𝑝𝛼

(4.9)

+
∑︁
𝑖

∑︁
𝛽

𝜕𝐿

𝜕v𝑛+1
𝑝𝛽

𝜕𝑁(x𝑖 − x𝑛
𝑝 )

𝜕x𝑖𝛼
v𝑛
𝑖𝛽 (4.10)

+
∑︁
𝑖

∑︁
𝛽

(4.11)

4

Δ𝑥2

{︃
− 𝜕𝐿

𝜕C𝑛+1
𝑝𝛽𝛼

𝑁(x𝑖 − x𝑛
𝑝 )v𝑖𝛽 +

∑︁
𝛾

𝜕𝐿

𝜕C𝑛+1
𝑝𝛽𝛾

𝜕𝑁(x𝑖 − x𝑛
𝑝 )

𝜕x𝑖𝛼
v𝑖𝛽(x𝑖𝛾 − x𝑝𝛾)

}︃
(4.12)

+
∑︁
𝑖

∑︁
𝛽

(4.13)

𝜕𝐿

𝜕p𝑛
𝑖𝛽

[︂
𝜕𝑁(x𝑖 − x𝑛

𝑝 )

𝜕x𝑖𝛼

(︀
𝑚𝑝v

𝑛
𝑝𝛽 + [G𝑝(x𝑖 − x𝑛

𝑝 )]𝛽
)︀
−𝑁(x𝑖 − x𝑛

𝑝 )G𝑝𝛽𝛼

]︂
(4.14)

+𝑚𝑝

∑︁
𝑖

𝜕𝐿

𝜕𝑚𝑛
𝑖

𝜕𝑁(x𝑖 − x𝑛
𝑝 )

𝜕x𝑖𝛼
(4.15)

We refer the readers to Appendix A for more details on gradient derivation. Based

on the gradients we have derived analytically, we have designed a high-performance

implementation that resembles the traditional forward MPM cycle: backward P2G

(scatter particle gradients to grid), grid operations, and backward G2P (gather grid

gradients to particles). Gradients of state at the end of a time step with respect to

states at the starting of the time step can be computed using the chain rule. With

the single-step gradients computed, applying the chain rule at a higher level from

the final state all-the-way to the initial state yields gradients of the final state with
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respect to the initial state, as well as to the controller parameters that are used in each

state. We cache all the simulation states in memory, using a “memo” object. Though

the underlying differentiation is complicated, we have designed a simple high-level

TensorFlow interface on which end-users can build their applications (Fig. 4-1).

Our high-performance implementation* takes advantage of the computational power

of modern GPUs through CUDA. We also implemented a reference implementation in

TensorFlow. Note that programming physical simulation as a “computation graph”

using high-level frameworks such as TensorFlow is less inefficient. In fact, when all the

overheads are gone, our optimized CUDA solver is 132× faster than the TensorFlow

reference version. This is because TensorFlow is optimized towards deep learning

applications where data granularity is much larger and memory access pattern is much

more regular than physical simulation, and limited CPU-GPU bandwidth. In contrast,

our CUDA implementation is tailored for MLS-MPM and explicitly optimized for

parallelism and locality, thus delivering high-performance.

*Based on the Taichi [15] open source computer graphics library.
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        iteration_feed_dict={goal: goal_input}, 
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sym = sim.gradients_sym(loss,                                         
                        variables=trainables)

grad = sim.eval_gradients(sym=sym, memo=memo) 
gradient_descent = [ 
    v.assign(v - lr * g) 
      for v, g in zip(trainables, grad) 
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sess.run(gradient_descent) 
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Figure 4-1: Left: A “memo" object consists all information of a single simulation
execution, including all the time step state information (position, velocity, deformation
gradients etc.), and parameters for the initial state 𝑝0, policy parameter 𝜃. Right:
Code samples to get the symbolic differentiation (top) and memo, evaluate gradients
out of the memo and symbolic differentiation, and finally use them for gradient descent
(bottom).
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Chapter 5

Evaluation

In this section, we conduct a comprehensive study of the efficiency and accuracy of

our system, in both 2D and 3D.

5.1 Efficiency

Instead of using complex geometries, a simple falling cube is used for performance

benchmarking, to ensure easy analysis and reproducibility. We benchmark the perfor-

mance of our CUDA simulator against NVIDIA Flex [23], a popular PBD physical

simulator capable of simulating deformable objects. Note that both PBD and MLS-

MPM needs substepping iterations to ensure high stiffness. To ensure fair comparison,

we set a Young’s modulus, Poisson’s ration and density so that visually ChainQueen

gives similar results to Flex. We used two steps per frame and four iterations per step

in Flex. Note that setting exactly the same parameters is not possible since in PBD

there is no explicitly defined physical quantity such as Young’s modulus.

We summarize the quantitative performance in Table 5.1. Our CUDA simulator

provides higher speed than Flex, when the number of particles are the same. It is also

worth noting that the TensorFlow implementation is much slower, due to excessive

runtime overheads.
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Table 5.1: Performance comparisons on a NVIDIA GTX 1080 Ti GPU. F stands
for forward simulation and B stands for backward differentiation. TF indicates the
TensorFlow implementation. When benchmarking our simulator with CUDA we use
the C++ instead of python interface to avoid the extra overhead due to the TensorFlow
runtime library.

Approach Impl. # Particles Time per Frame

Flex (3D) CUDA 8,024 3.5 ms (286 FPS)
Ours (3D, F) CUDA 8,000 0.392 ms (2,551 FPS)
Ours (3D, B) CUDA 8,000 0.406 ms (2,463 FPS)

Flex (3D) CUDA 61,238 6 ms (167 FPS)
Ours (3D, F) CUDA 64,000 1.594 ms (628 FPS)
Ours (3D, B) CUDA 64,000 1.774 ms (563 FPS)

Ours (3D, F) CUDA 512,000 10.501 ms (92 FPS)
Ours (3D, B) CUDA 512,000 11.594 ms (86 FPS)

Ours (2D, F) TF 6,400 13.2 ms (76 FPS)
Ours (2D, B) TF 6,400 35.7 ms (28 FPS)
Ours (2D, F) CUDA 6,400 0.10 ms (10,000 FPS)
Ours (2D, B) CUDA 6,400 0.14 ms (7,162 FPS)

5.2 Accuracy

We design five test cases to evaluate the accuracy of both forward simulation and

backward gradient evaluation:

1. A1 (analytic, 3D, float32 precision): final position w.r.t. initial velocity (with

collision). This case tests conservation of momentum, gradient accuracy and

stability of back-propagation.

2. A2 (analytic, 3D, float32 precision): same as A1 but with one collision to a

friction-less wall.

3. B (numeric, 2D, float64 precision): colliding billiards. This case tests gradient

accuracy and stability in more complex cases where analytic solutions do not

exist. We used float64 precision for accurate finite difference results.

4. C (numeric, 2D, float64 precision): finger controller. This case tests gradient

accuracy of controller parameters, which are used repeatedly in the whole
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Table 5.2: Relative error in simulation and gradient precision. Empty values are
because of too short time for collision to happen.

Case 1 steps 10 steps 100 steps 1000 steps

A1 9.80× 10−8 4.74× 10−8 1.15× 10−7 1.43× 10−5

A2 - - - 2.69× 10−5

B - - 2.39× 10−8 2.83× 10−8

C 5.63× 10−6 2.24× 10−7 6.97× 10−7 1.76× 10−6

simulation process.

5. D1 (experimental, pneumatic actuator, actuation) In order to evaluate our

simulator’s real-world accuracy, we compared the deformation of a physical

actuator to a virtual one. The physical actuator has four pneumatic chambers

which can be inflated with an external pump, arranged in a cross-shape. Inflating

the individual chambers bends the actuator away from that chamber. The

actuator was cast using Smooth-On Dragon Skin 30.

6. D2 (experimental, pneumatic actuator, bouncing) In a second test, we dropped

the same actuator from a 15 cm height, and compared its dynamic motion to a

simulation.

In 3D analytic test cases, where gradients w.r.t. initial velocity can be directly

evaluated as in Table 5.2. For the experimental comparisons, the results are shown in

Fig. 5-1. In addition to our simulator’s high performance and accuracy, it is worth

noting that that the gradients remain stable in the long term, within up to 1000 time

steps.
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Figure 5-1: Experiments on the pneumatic leg. Row (A, B) Footage and simulator
results of a bouncing experiment with the leg dropping at 15 cm. Row (C, D)
Actuation test.
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Chapter 6

Applications

The most attractive feature of our simulator is the existence of quickly computable

gradients, which allows the use of much more efficient gradient-based optimization

algorithms. In this section, we show the effectiveness of our differentiable simulator

on gradient-based optimization tasks, including physical inference, control for soft

robotics, and co-design of robotic arms.

6.1 Physical Parameter Inference

ChainQueen can be used to infer physical system properties given its observed motion,

e.g. perform gradient descent to infer the relative densities of two colliding elastic

balls (see Figure 6-1, ball A moving to the right hitting ball B, and ball B arrives

the destination C). Gradient-based optimization infers that relative density of ball A

is 2.26, which constitutes to the correct momentum to push B to C. Such capability

makes it useful for real-world robotic tasks such as system identification.

6.2 Control

We can optimize regression-based controllers for soft robots and efficiently discover

stable gaits. The controller takes as input the state vector z, which includes target

position, the center of mass position, and velocity of each composed soft component.
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Figure 6-1: System Identification. The initial density 1 for elastic ball A leads to
limited momentum to push ball B to its destination C. After several gradient descent
iterations, the inferenced (optimized) density 2.26 gives the right amount of momentum
for ball B to stop at C at the end of the simulation.
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Figure 6-2: A soft 2D walker with controller optimized using gradient descent, aiming
to achieve a maximum distance after 600 simulation steps. The walker has four
actuators (left, marked by letter ‘A’s) with each capable of stretching or compressing
in the vertical direction.

In our examples, the actuation vector a for up to 16 actuators is generated by the

controller in each time step. During optimization, we perform gradient descent on

variables W and b, where a = tanh (Wz + b) is the actuation-generating controller.

We have designed a series of experiments (Fig. 6-2 and Fig. 6-3). Gradient-based

optimizers successfully compute desired closed loop controllers controllers within only

tens or hundreds of iterations.

6.3 Co-design

Our simulator is capable of not only providing gradients with respect to dynamics and

controller parameters, but also with respect to structural design parameters, enabling

co-design of soft robots. To demonstrate this, we designed a multi-link robot arm (two

links, two joints each with two side-by-side actuators; all parts deformable). Similar

to shooting method trajectory optimization, actuation for each time step is solved

for, along with the time-invariant Young’s modulus of the system for each particle. In

our task, we optimized the end-effector of the arm to reach a goal ball with final 0

arm velocity, and minimized for actuation cost
∑︀𝑁

𝑖=0 𝑢
𝑇
𝑖 𝑢𝑖𝑑𝑡, where 𝑢𝑖 is the actuation

vector at timestep 𝑖, and 𝑁 is the total number of timesteps. This is a dynamic task

and the target pose cannot be reached in a static equilibrium. NLOPT’s sequential

least squares programming algorithm was used for optimization [20]. We compared

our co-design solution to fixed designs. The designed stiffness distribution is shown in

Fig. 6-4, along with controls. The convergence for the different tasks can be seen in

Fig. 6-5. As can be seen, only the co-design arm fully converges to the target goal,

and with lower actuation cost. Actuation for each chamber was clamped, and rnges
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of 30% to 400% of a dimensionless initial Young’s modulus were allowed and chosen

large enough such as to require a swing instead of a simple bend.
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Figure 6-3: 3D robots with optimized controllers: quadruped runner, robotic finger,
and crawler. The crawler is optimized with an open-loop controller, taking only
trigonometric phase functions of time 𝑡 as inputs.

33



(a) Actuation
config

(b) Resting pose (c) Final pose I (d) Final pose II (e) Final pose III

Figure 6-4: Final poses of the arm swing task. Lighter colors refer to stiffer
regions. (c) Final pose of the fixed-stiffness 300% initial Young’s modulus arm. (d)
Final pose of the fixed-stiffness 300% initial Young’s modulus arm. (e) Final pose of
the co-optimized arm. Actuation cost is 95.5% that of the fixed 100% initial Young’s
modulus arm and converges. Only the co-optimized arm is able to fully reach its
target. The final optimized spatially varying stiffness of the arm has lower stiffness on
the outside of the bend, and higher stiffness inside, promoting more bend to the left.
Qualitatively, this is similar in effect to the pleating on soft robot fingers.
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Figure 6-5: Convergence of the arm reaching task for co-design vs. fixed arm designs.
The fixed designs can make progress but not complete the task, while with co-design,
the task can be completed and the actuation cost is lower. Constraint violation is the
norm of two constraints: distance of end-effector to goal and mean squared velocity of
the particles.
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Chapter 7

Discussion

We have presented ChainQueen, a differentiable simulator for soft robotics, and

demonstrated how it can be deployed for inference, control, and co-design. ChainQueen

has the potential to accelerate the development of soft robots. We have also developed

a high-performance GPU implementation for ChainQueen, which we will open source.

One interesting future direction is to couple our soft object simulation with rigid

body simulation, as done in [16]. As derived in [7], the ∆𝑡 limit for explicit time

integration is 𝐶∆𝑥
√︀

𝜌
𝐸

, where 𝐶 is a constant close to one, 𝜌 is the density, and 𝐸 is

the Young’s modulus. That means for very stiff materials (e.g., rigid bodies), only

a very restrictive ∆𝑡 can be used. However, a rigid body simulator should probably

be employed in the realm of nearly-rigid objects and coupled with our deformable

body simulator. Combining our simulator with existing rigid-body simulators using

Compatible Particle-in-Cell [16] can be an interesting direction.
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Appendix A

Differentiation

In this appendix, we discuss the detailed steps for backward gradient computation

in ChainQueen, i.e. the differentiable Moving Least Squares Material Point Method

(MLS-MPM) [16]. Again, we summarize the notations in Table A.1. We assume fixed

particle mass 𝑚𝑝, volume 𝑉 0
𝑝 , hyperelastic constitutive model (with potential energy

𝜓𝑝 or Young’s modulus 𝐸𝑝 and Poisson’s ratio 𝜈𝑝) for simplicity.

A.1 Variable dependencies

The MLS-MPM time stepping is defined as follows:
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Table A.1: List of notations for MLS-MPM.

Symbol Type Affiliation Meaning

Δ𝑡 scalar time step size
Δ𝑥 scalar grid cell size
x𝑝 vector particle position
𝑉 0
𝑝 scalar particle initial volume
v𝑝 vector particle velocity
C𝑝 matrix particle affine velocity field [17]
P𝑝 matrix particle PK1 stress (𝜕𝜓𝑝/𝜕F𝑝)
𝜎𝑝𝑎 matrix particle actuation Cauchy stress
A𝑝 matrix particle actuation stress (material space)
F𝑝 matrix particle deformation gradient
x𝑖 vector node position
𝑚𝑖 scalar node mass
v𝑖 vector node velocity
p𝑖 vector node momentum, i.e. 𝑚𝑖v𝑖

𝑁 scalar quadratic B-spline function

P𝑛
𝑝 = P𝑛

𝑝 (F
𝑛
𝑝 ) + F𝑝𝜎

𝑛
𝑝𝑎 (A.1)

𝑚𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )𝑚𝑝 (A.2)

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(A.3)

v𝑛
𝑖 =

1

𝑚𝑛
𝑖

p𝑛
𝑖 (A.4)

v𝑛+1
𝑝 =

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (A.5)

C𝑛+1
𝑝 =

4

Δ𝑥2

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (x𝑖 − x𝑛

𝑝 )
𝑇 (A.6)

F𝑛+1
𝑝 = (I+Δ𝑡C𝑛+1

𝑝 )F𝑛
𝑝 , (A.7)

x𝑛+1
𝑝 = x𝑛

𝑝 +Δ𝑡v𝑛+1
𝑝 (A.8)
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The forward variable dependency is as follows:

x𝑛+1
𝑝 ← x𝑛

𝑝 ,v
𝑛+1
𝑝 (A.9)

v𝑛+1
𝑝 ← x𝑛

𝑝 ,v
𝑛
𝑖 (A.10)

C𝑛+1
𝑝 ← x𝑛

𝑝 ,v
𝑛
𝑖 (A.11)

F𝑛+1
𝑝 ← F𝑛

𝑝 ,C
𝑛+1
𝑝 (A.12)

p𝑛
𝑖 ← x𝑛

𝑝 ,C
𝑛
𝑝 ,v

𝑛
𝑝 ,P

𝑛
𝑝 ,F

𝑛
𝑝 (A.13)

v𝑛
𝑖 ← p𝑛

𝑖 ,𝑚
𝑛
𝑖 (A.14)

P𝑛
𝑝 ← F𝑛

𝑝 ,𝜎
𝑛
𝑝𝑎 (A.15)

𝑚𝑛
𝑖 ← x𝑛

𝑝 (A.16)

During back-propagation, we have the following reversed variable dependency:

x𝑛+1
𝑝 ,v𝑛+1

𝑝 ,C𝑛+1
𝑝 ,p𝑛+1

𝑖 ,𝑚𝑖 ← x𝑛
𝑝 (A.17)

p𝑛
𝑖 ← v𝑛

𝑝 (A.18)

x𝑛+1
𝑝 ← v𝑛+1

𝑝 (A.19)

v𝑛+1
𝑝 ,C𝑛+1

𝑝 ← v𝑛
𝑖 (A.20)

F𝑛+1
𝑝 ,P𝑛

𝑝 ,p
𝑛
𝑖 ← F𝑛

𝑝 (A.21)

F𝑛+1
𝑝 ← C𝑛+1

𝑝 (A.22)

p𝑛
𝑖 ← C𝑛

𝑝 (A.23)

v𝑛
𝑖 ← p𝑛

𝑖 (A.24)

v𝑛
𝑖 ← 𝑚𝑛

𝑖 (A.25)

p𝑛
𝑖 ← P𝑛

𝑝 (A.26)

P𝑛
𝑝 ← 𝜎𝑛

𝑝𝑎 (A.27)

We reverse swap two sides of the equations for easier differentiation derivation:
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x𝑛
𝑝 → x𝑛+1

𝑝 ,v𝑛+1
𝑝 ,C𝑛+1

𝑝 ,p𝑛+1
𝑖 ,𝑚𝑖 (A.28)

v𝑛
𝑝 → p𝑛

𝑖 (A.29)

v𝑛+1
𝑝 → x𝑛+1

𝑝 (A.30)

v𝑛
𝑖 → v𝑛+1

𝑝 ,C𝑛+1
𝑝 (A.31)

F𝑛
𝑝 → F𝑛+1

𝑝 ,P𝑛
𝑝 ,p

𝑛
𝑖 (A.32)

C𝑛+1
𝑝 → F𝑛+1

𝑝 (A.33)

C𝑛
𝑝 → p𝑛

𝑖 (A.34)

p𝑛
𝑖 → v𝑛

𝑖 (A.35)

𝑚𝑛
𝑖 → v𝑛

𝑖 (A.36)

P𝑛
𝑝 → p𝑛

𝑖 (A.37)

𝜎𝑛
𝑝𝑎 → P𝑛

𝑝 (A.38)

In the following sections, we derive detailed gradient relationships, in the order

of actual gradient computation. The frictional boundary condition gradients are

postponed to the end since it is less central, though during computation it belongs

to grid operations. Back-propagation in ChainQueen is essentially a reversed process

of forward simulation. The computation has three steps, backward particle to grid

(P2G), backward grid operations, and backward grid to particle (G2P).
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A.2 Backward Particle to Grid (P2G)

(A, P2G) For v𝑛+1
𝑝 , we have

x𝑛+1
𝑝 = x𝑛

𝑝 + ∆𝑡v𝑛+1
𝑝 (A.39)

=⇒ 𝜕𝐿

𝜕v𝑛+1
𝑝𝛼

=

[︂
𝜕𝐿

𝜕x𝑛+1
𝑝

𝜕x𝑛+1
𝑝

𝜕v𝑛+1
𝑝

]︂
𝛼

(A.40)

= ∆𝑡
𝜕𝐿

𝜕x𝑛+1
𝑝𝛼

. (A.41)

(B, P2G) For C𝑛+1
𝑝 , we have

F𝑛+1
𝑝 = (I + ∆𝑡C𝑛+1

𝑝 )F𝑛
𝑝 (A.42)

=⇒ 𝜕𝐿

𝜕C𝑛+1
𝑝𝛼𝛽

=

[︂
𝜕𝐿

𝜕F𝑛+1
𝑝

𝜕F𝑛+1
𝑝

𝜕C𝑛+1
𝑝

]︂
𝛼𝛽

(A.43)

= ∆𝑡
∑︁
𝛾

𝜕𝐿

𝜕F𝑛+1
𝑝𝛼𝛾

F𝑛
𝑝𝛽𝛾. (A.44)

Note, the above two gradients should also include the contributions of 𝜕𝐿
𝜕v𝑛

𝑝
and

𝜕𝐿
𝜕C𝑛

𝑝
respectively, with 𝑛 being the next time step.

(C, P2G) For v𝑛
𝑖 , we have

v𝑛+1
𝑝 =

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (A.45)

C𝑛+1
𝑝 =

4

Δ𝑥2

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (x𝑖 − x𝑛

𝑝 )
𝑇 (A.46)

=⇒ 𝜕𝐿

𝜕v𝑛
𝑖𝛼

=

[︃∑︁
𝑝

𝜕𝐿

𝜕v𝑛+1
𝑝

𝜕v𝑛+1
𝑝

𝜕v𝑛
𝑖

+
∑︁
𝑝

𝜕𝐿

𝜕C𝑛+1
𝑝

𝜕C𝑛+1
𝑝

𝜕v𝑛
𝑖

]︃
𝛼

(A.47)

=
∑︁
𝑝

⎡⎣ 𝜕𝐿

𝜕v𝑛+1
𝑝𝛼

𝑁(x𝑖 − x𝑛
𝑝 ) +

4

Δ𝑥2
𝑁(x𝑖 − x𝑛

𝑝 )
∑︁
𝛽

𝜕𝐿

𝜕C𝑛+1
𝑝𝛼𝛽

(x𝑖𝛽 − x𝑝𝛽)

⎤⎦ . (A.48)
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A.3 Backward Grid Operations

(D, grid) For p𝑛
𝑖 , we have

v𝑛
𝑖 =

1

𝑚𝑛
𝑖

p𝑛
𝑖 (A.49)

=⇒ 𝜕𝐿

𝜕p𝑛
𝑖𝛼

=

[︂
𝜕𝐿

𝜕v𝑛
𝑖

𝜕v𝑛
𝑖

𝜕p𝑛
𝑖

]︂
𝛼

(A.50)

=
𝜕𝐿

𝜕v𝑛
𝑖𝛼

1

𝑚𝑛
𝑖

. (A.51)

(E, grid) For 𝑚𝑛
𝑖 , we have

v𝑛
𝑖 =

1

𝑚𝑛
𝑖

p𝑛
𝑖 (A.52)

=⇒ 𝜕𝐿

𝜕𝑚𝑛
𝑖

=
𝜕𝐿

𝜕v𝑛
𝑖

𝜕v𝑛
𝑖

𝜕𝑚𝑛
𝑖

(A.53)

= − 1

(𝑚𝑛
𝑖 )2

∑︁
𝛼

p𝑛
𝑖𝛼

𝜕𝐿

𝜕v𝑛
𝑖𝛼

(A.54)

= − 1

𝑚𝑛
𝑖

∑︁
𝛼

v𝑛
𝑖𝛼

𝜕𝐿

𝜕v𝑛
𝑖𝛼

. (A.55)

A.4 Backward Grid to Particle (G2P)

(F, G2P) For v𝑛
𝑝 , we have

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(A.56)

=⇒ 𝜕𝐿

𝜕v𝑛
𝑝𝛼

=

[︃∑︁
𝑖

𝜕𝐿

𝜕p𝑛
𝑝

𝜕p𝑛
𝑝

𝜕v𝑛
𝑝

]︃
𝛼

(A.57)

=
∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )𝑚𝑝

𝜕𝐿

𝜕p𝑛
𝑖𝛼

. (A.58)
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(G, G2P) For P𝑛
𝑝 , we have

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(A.59)

=⇒ 𝜕𝐿

𝜕P𝑛
𝑝𝛼𝛽

=

[︂
𝜕𝐿

𝜕p𝑛
𝑖

𝜕p𝑛
𝑖

𝜕P𝑛
𝑝

]︂
𝛼𝛽

(A.60)

= −
∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )

4

Δ𝑥2
Δ𝑡𝑉 0

𝑝

∑︁
𝛾

𝜕𝐿

𝜕p𝑛
𝑖𝛼

F𝑛
𝑝𝛾𝛽(x𝑖𝛾 − x𝑛

𝑝𝛾). (A.61)

(H, G2P) For F𝑛
𝑝 , we have

F𝑛+1
𝑝 = (I+Δ𝑡C𝑛+1

𝑝 )F𝑛
𝑝 (A.62)

P𝑛
𝑝 = P𝑛

𝑝 (F
𝑛
𝑝 ) + F𝑝𝜎

𝑛
𝑝𝑎 (A.63)

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(A.64)

=⇒ 𝜕𝐿

𝜕F𝑛
𝑝𝛼𝛽

=

[︃
𝜕𝐿

𝜕F𝑛+1
𝑝

𝜕F𝑛+1
𝑝

𝜕F𝑛
𝑝

+
𝜕𝐿

𝜕P𝑛
𝑝

𝜕P𝑛
𝑝

𝜕F𝑛
𝑝

+
𝜕𝐿

𝜕p𝑛
𝑖

𝜕p𝑛
𝑖

𝜕F𝑛
𝑝

]︃
𝛼𝛽

(A.65)

=
∑︁
𝛾

𝜕𝐿

𝜕F𝑛+1
𝑝𝛾𝛽

(I𝛾𝛼 +Δ𝑡C𝑛+1
𝑝𝛾𝛼 ) +

∑︁
𝛾

∑︁
𝜂

𝜕𝐿

𝜕P𝑝𝛾𝜂

𝜕2Ψ𝑝

𝜕F𝑛
𝑝𝛾𝜂𝜕F

𝑛
𝑝𝛼𝛽

(A.66)

+
∑︁
𝛾

𝜕𝐿

𝜕P𝑛
𝑝𝛼𝛾

𝜎𝑝𝑎𝛽𝛾 (A.67)

+
∑︁
𝑖

−𝑁(x𝑖 − x𝑛
𝑝 )

∑︁
𝛾

𝜕𝐿

𝜕p𝑛
𝑖𝛾

4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝𝛾𝛽(x𝑖𝛼 − x𝑛

𝑝𝛼). (A.68)

(I, G2P) For C𝑛
𝑝 , we have

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(A.69)

=⇒ 𝜕𝐿

𝜕C𝑛
𝑝𝛼𝛽

=

[︃∑︁
𝑖

𝜕𝐿

𝜕p𝑛
𝑖

𝜕p𝑛
𝑖

𝜕C𝑛
𝑝

]︃
𝛼𝛽

(A.70)

=
∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )

𝜕𝐿

𝜕p𝑛
𝑖𝛼

𝑚𝑝(x𝑖𝛽 − x𝑛
𝑝𝛽). (A.71)
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(J, G2P) For x𝑛
𝑝 , we have

x𝑛+1
𝑝 = x𝑛

𝑝 +Δ𝑡v𝑛+1
𝑝 (A.72)

v𝑛+1
𝑝 =

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (A.73)

C𝑛+1
𝑝 =

4

Δ𝑥2

∑︁
𝑖

𝑁(x𝑖 − x𝑛
𝑝 )v

𝑛
𝑖 (x𝑖 − x𝑛

𝑝 )
𝑇 (A.74)

p𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )

[︂
𝑚𝑝v

𝑛
𝑝 +

(︂
− 4

Δ𝑥2
Δ𝑡𝑉 0

𝑝 P
𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(x𝑖 − x𝑛

𝑝 )

]︂
(A.75)

𝑚𝑛
𝑖 =

∑︁
𝑝

𝑁(x𝑖 − x𝑛
𝑝 )𝑚𝑝 (A.76)

G𝑝 :=

(︂
− 4

Δ𝑥2
𝑉 0
𝑝 Δ𝑡P

𝑛
𝑝F

𝑛𝑇
𝑝 +𝑚𝑝C

𝑛
𝑝

)︂
(A.77)

=⇒ (A.78)

𝜕𝐿

𝜕x𝑛
𝑝𝛼

=

[︃
𝜕𝐿

𝜕x𝑛+1
𝑝

𝜕x𝑛+1
𝑝

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕v𝑛+1
𝑝

𝜕v𝑛+1
𝑝

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕C𝑛+1
𝑝

𝜕C𝑛+1
𝑝

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕p𝑛
𝑖

𝜕p𝑛
𝑖

𝜕x𝑛
𝑝

+
𝜕𝐿

𝜕𝑚𝑛
𝑖

𝜕𝑚𝑛
𝑖

𝜕x𝑛
𝑝

]︃
𝛼

(A.79)

=
𝜕𝐿

𝜕x𝑛+1
𝑝𝛼

(A.80)

+
∑︁
𝑖

∑︁
𝛽

𝜕𝐿

𝜕v𝑛+1
𝑝𝛽

𝜕𝑁(x𝑖 − x𝑛
𝑝 )

𝜕x𝑖𝛼
v𝑛
𝑖𝛽 (A.81)

+
∑︁
𝑖

∑︁
𝛽

(A.82)

4

Δ𝑥2

{︃
− 𝜕𝐿

𝜕C𝑛+1
𝑝𝛽𝛼

𝑁(x𝑖 − x𝑛
𝑝 )v𝑖𝛽 +

∑︁
𝛾

𝜕𝐿

𝜕C𝑛+1
𝑝𝛽𝛾

𝜕𝑁(x𝑖 − x𝑛
𝑝 )

𝜕x𝑖𝛼
v𝑖𝛽(x𝑖𝛾 − x𝑝𝛾)

}︃
(A.83)

+
∑︁
𝑖

∑︁
𝛽

(A.84)

𝜕𝐿

𝜕p𝑛
𝑖𝛽

[︂
𝜕𝑁(x𝑖 − x𝑛

𝑝 )

𝜕x𝑖𝛼

(︀
𝑚𝑝v

𝑛
𝑝𝛽 + [G𝑝(x𝑖 − x𝑛

𝑝 )]𝛽
)︀
−𝑁(x𝑖 − x𝑛

𝑝 )G𝑝𝛽𝛼

]︂
(A.85)

+𝑚𝑝

∑︁
𝑖

𝜕𝐿

𝜕𝑚𝑛
𝑖

𝜕𝑁(x𝑖 − x𝑛
𝑝 )

𝜕x𝑖𝛼
(A.86)

(K, G2P) For 𝜎𝑛
𝑝𝑎, we have

P𝑛
𝑝 = P𝑛

𝑝 (F𝑛
𝑝 ) + F𝑝𝜎

𝑛
𝑝𝑎 (A.87)

=⇒ 𝜕𝐿

𝜕𝜎𝑛
𝑝𝑎𝛼𝛽

=

[︂
𝜕𝐿

𝜕P𝑛
𝑝

𝜕P𝑛
𝑝

𝜕𝜎𝑛
𝑝𝛼

]︂
𝛼𝛽

(A.88)

=
∑︁
𝛾

𝜕𝐿

𝜕P𝑛+1
𝑝𝛾𝛽

F𝑛
𝑝𝛾𝛼. (A.89)
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A.5 Friction Projection Gradients

When there are boundary conditions:

(L, grid) For v𝑛
𝑖 , we have

𝑙𝑖n =
∑︁
𝛼

v𝑖𝛼n𝑖𝛼 (A.90)

v𝑖t = v𝑖 − 𝑙𝑖nn𝑖 (A.91)

𝑙𝑖t =

√︃∑︁
𝛼

v2
𝑖t𝛼 + 𝜀 (A.92)

v̂𝑖t =
1

𝑙𝑖t
v𝑖t (A.93)

𝑙*𝑖t = max{𝑙𝑖t + 𝑐𝑖 min{𝑙𝑖n, 0}, 0} (A.94)

v*
𝑖 = 𝑙*𝑖tv̂𝑖t + max{𝑙𝑖n, 0}n𝑖 (A.95)

𝐻(𝑥) := [𝑥 ≥ 0] (A.96)

𝑅 := 𝑙𝑖t + 𝑐𝑖 min{𝑙𝑖n,0} (A.97)

=⇒ 𝜕𝐿

𝜕𝑙*𝑖t
=

∑︁
𝛼

𝜕𝐿

𝜕v*
𝑖𝛼

v̂𝑖t𝛼 (A.98)

𝜕𝐿

𝜕v̂𝑖t

=
𝜕𝐿

𝜕v*
𝑖𝛼

𝑙*𝑖t (A.99)

𝜕𝐿

𝜕𝑙𝑖t
= − 1

𝑙2𝑖t

∑︁
𝛼

v𝑖t𝛼
𝜕𝐿

𝜕v̂𝑖t𝛼

+
𝜕𝐿

𝜕𝑙*𝑖t
𝐻(𝑅) (A.100)

𝜕𝐿

𝜕v𝑖t𝛼

=
v𝑖t𝛼

𝑙𝑖t

𝜕𝐿

𝜕𝑙𝑖t
+

1

𝑙𝑖t

𝜕𝐿

𝜕v̂𝑖t𝛼

(A.101)

=
1

𝑙𝑖t

[︂
𝜕𝐿

𝜕𝑙𝑖t
v𝑖t𝛼 +

𝜕𝐿

𝜕v̂𝑖t𝛼

]︂
(A.102)

𝜕𝐿

𝜕𝑙𝑖n
= −

[︃∑︁
𝛼

𝜕𝐿

𝜕v𝑖t𝛼

n𝑖𝛼

]︃
(A.103)

+
𝜕𝐿

𝜕𝑙*𝑖t
𝐻(𝑅)𝑐𝑖𝐻(−𝑙𝑖n) +

∑︁
𝛼

𝐻(𝑙𝑖n)n𝑖𝛼
𝜕𝐿

𝜕v*
𝑖𝛼

(A.104)

𝜕𝐿

𝜕v𝑖𝛼

=
𝜕𝐿

𝜕𝑙𝑖n
n𝑖𝛼 +

𝜕𝐿

𝜕v𝑖t𝛼

(A.105)
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