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Fig. 1. We present a spectral reproduction technique using a 3D printer. Our workflow targets accurate reproduction of paintings and provides faithful color

reproductions under varying light sources. Above, we show three printed replicas of oil paintings with diferent image statistics, generated by our method,

next to the original. On the right, we show cropped regions (three water lilies) from big water lily replica with the original under varying lighting sources.

Paintings ©Azadeh Asadi.

We propose a worklow for spectral reproduction of paintings, which cap-

tures a painting’s spectral color, invariant to illumination, and reproduces

it using multi-material 3D printing. We take advantage of the current 3D

printers’ capabilities of combining highly concentrated inks with a large

number of layers, to expand the spectral gamut of a set of inks. We use

a data-driven method to both predict the spectrum of a printed ink stack

and optimize for the stack layout that best matches a target spectrum. This

bidirectional mapping is modeled using a pair of neural networks, which

are optimized through a problem-speciic multi-objective loss function. Our

loss function helps ind the best possible ink layout resulting in the balance

between spectral reproduction and colorimetric accuracy under a multi-

tude of illuminants. In addition, we introduce a novel spectral vector error

difusion algorithm based on combining color contoning and halftoning,

which simultaneously solves the layout discretization and color quantiza-

tion problems, accurately and eiciently. Our worklow outperforms the
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state-of-the-art models for spectral prediction and layout optimization. We

demonstrate reproduction of a number of real paintings and historically im-

portant pigments using our prototype implementation that uses 10 custom

inks with varying spectra and a resin-based 3D printer.
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1 INTRODUCTION

Fine art is a crucial element of human culture, but our reliance

on museums to exhibit original paintings and sculpture inherently

limits access and leaves those precious originals vulnerable to de-

terioration and damage. The availability of high-quality facsimiles

has the potential to not only broaden exposure but also leave the

originals unharmed, in such scenarios as restoration practice, con-

servatory studies and education in museums [Elkhuizen et al. 2014].

Paintings are brilliant examples of ine art artifacts and natural irst

candidates for an appearance reproduction efort. The advance
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of both 3D printing and 3D scanning technology has brought an

increasing interest in high-quality painting reproduction to both

academia and industry. A number of commercial Companies have

established relationships with art distributors and museums to pro-

vide painting reproductions and are preparing for potential mass

production of artwork.

Traditionally, the color reproduction of paintings is carried out

using 2D printers. However, they have severe shortcomings for

high-idelity color reproduction as a consequence of two interre-

lated problems. First, their color gamut is limited because of their

ixed set of inks, which usually includes only cyan, magenta, yellow,

and black (CMYK). Although the limited gamut can be overcome

with a larger number and a wider variety of inks, only a limited

amount of ink can be deposited within a given region. Exceeding

the so-called total ink limit results in deteriorated image quality,

ink blotting, or mechanical malfunction of the printer [Babaei and

Hersch 2016]. Second, 2D printers predominantly use colorimetric

color reproduction, in which the color matching is carried out un-

der a reference illuminant and assumes a set of standard observers.

This can lead to metamerism, a well-known problem in color repro-

duction wherein a good reproduction is obtained under one light

source, but not under another [Wyszecki and Stiles 1982].

In this work, we focus on an accurate reproduction of spectral

color with 3D printing. The recent breakthrough in high-resolution,

multi-material 3D printing carries the potential for groundbreaking

advances in ine art reproduction. While 3D printers are powerful

devices for fabricating objects with custom and complex geome-

try, they can also create multi-material composites that result in

new appearance properties. Among them, the spectral color is of-

ten considered as most important appearance attribute for most

forms of paintings. The spectral relectance of a surface encodes

the complete information about its color. Therefore, the spectral

color reproduction is invariant to the color of the light source under

which the reproduction is observed.

Good spectral reproduction requires a large spectral gamut. We,

therefore, equip our 3D printer with 10 inks and take advantage of

its ability to combine highly concentrated inks with a large number

of thin layers, inspired by the recently proposed color contoning

technique [Babaei et al. 2017]. In doing so, we expand the gamut re-

alized by our set of inks signiicantly. The use of high-concentration

inks in contoning, however, comes at the cost of color quantization

artifacts. Therefore, we introduce a novel spectral vector error dif-

fusion halftoning [Kawaguchi et al. 1999] that uses the ink stacks

of all possible layer combinations as halftone primaries with an

unprecedented eiciency. This turns the spectral vector error difu-

sion of potentially billions of primaries into a viable approach, with

signiicantly alleviated artifacts (due to an insuicient number of

primaries). Furthermore, the halftoning resolve the problems asso-

ciated with the discrete nature of ink layers, making even a simple

layer rounding reliable in practice.

Accurate modeling of the complex light transport across ink lay-

ers, in the presence of printing inaccuracies, is a challenging task if

pursued using physical modeling methods. We instead take a data-

driven approach, modeling the bidirectional mapping between the

spectral relectance and the ink stack layout using artiicial neural

networks, which are learned from the actual printed ink stacks. We

produce superior performance in both reproduction quality and

run-time, compared to previous physically-based or data-driven ap-

proaches. We validate and evaluate our approach using historically

important pigments in painting and a number of real paintings.

Our main contributions are:

• A complete physical reproduction framework, comprising

both acquisition and fabrication, tailored for the re-creation

of paintings;

• A data-driven spectral color prediction model based on neu-

ral networks that outperforms existing methods for both pre-

dicting the spectrum of a stack of ink layers and inding an

optimal ink stack for a target spectrum;

• A highly eicient spectral vector error difusion method

that combines ideas from contoning (combining thin layers

of inks) and halftoning (employing spatial modulation) to

achieve smooth yet accurate color reproduction;

• A dataset, which we will make it publicly available, of 20,878

contone ink stack spectra and layouts, spectrally captured oil

paintings, together with their optimized layouts using our

ink library, and photographs of our printed reproductions

under multiple illuminations.

2 PREVIOUS WORK

Our work builds on the rich history of research on color reproduc-

tion while embracing new printing technologies and techniques.

Below we briely review the work most relevant to ours.

Custom-Ink Color Printing. The 2D printing literature is abun-

dant with custom-ink printing (sometimes known as n-ink print-

ing), in which the printer employs inks diferent from the traditional

CMYK, mostly to expand the gamut of the printer. There are multi-

ple challenges in custom-ink 2D printing, however, including color

prediction of halftones, color separation, increased halftoning com-

plexity, and the total ink limit [Babaei and Hersch 2016]. Stollnitz

et al. [1998] propose a color reproduction worklow using custom

inks that addresses these challenges. In addition, their framework

is capable of choosing the best inks for reproducing a certain image.

Ostromoukhov [1993] introduces a heptatone (7-ink) printing sys-

tem that includes cyan, yellow, black, red, green, blue, and purple.

Rossier [2013] expands the color gamut signiicantly by combin-

ing daylight luorescent inks with the CMYK palette. Custom-ink

printing may also be used for reducing the visibility of halftones or

ink consumption [Son et al. 2011]. Today there are consumer-grade

desktop 2D printers available that use 10 inks or more.

Color 3D Printing. While the use of multiple, custom inks is preva-

lent in 2D printing, 3D printing has recently begun to accommodate

color printing. Although the efort to introduce multiple colors in

3D printing has been started with the fused deposition modeling

(FDM) technology [Reiner et al. 2014; Hergel and Lefebvre 2014],

the best quality for ine art reproduction is currently achieved by

resin-based inkjet 3D printers. Brunton et al. [2015] introduced an

error difusion algorithm for the surfaces of 3D printed geometry.

In order to eliminate the halftoning artifacts, Babaei et al. [2017]

proposed a contoning scheme in which diferent inks are layered to

form the print; our printing worklow builds on this idea. Recently,
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Elek et al. [2017] proposed a color reproduction worklow that pre-

serves the texture by simulating the crosstalk between neighboring

voxels using Monte Carlo path tracing. It is also possible to incorpo-

rate translucency in color printing pipelines, owing to clear resins,

and thereby creating spatially-varying translucency and color us-

ing a 3D printer [Brunton et al. 2018]. Yet another approach to

decorating a surface is to transfer a previously printed texture to

the 3D object, using methods such as hydrographic printing [Zhang

et al. 2015; Panozzo et al. 2015] and thermoforming [Schüller et al.

2016; Zhang et al. 2016]. All these methods, however, focus on col-

orimetric reproduction using CMYK inks. Compared to them, our

work aims at spectral reproduction and uses a signiicantly larger

number of inks to achieve a larger color gamut.

Spectral Printing. Spectral printing has been an active research

area in 2D printing. Most of these works, however, focus on spectral

modeling of 2D printers, tested on in-gamut colors, and not a com-

plete worklow for generating printouts. The prediction models are

often based on the Yule-Nielsen spectral Neugebauer model [Taplin

and Berns 2001], or its cellular version [Chen et al. 2004]. Berns et al.

[2008] designed a spectral acquisition and modeling system, specif-

ically for works of art. The most promising approaches to spectral

reproduction are based on higher-dimensional interim connection

spaces [Derhak and Rosen 2006; Tsutsumi et al. 2008]. However, as

pointed out by Morovič et al. [2012], the major limit on the quality

of spectral reproduction is the spectral gamut of a 2D printer, which

is signiicantly smaller than the naturally occurring spectral gamut.

It is noteworthy that spectral gamut mapping [Rosen and Derhak

2006; Urban and Berns 2011] can improve the quality of spectral

reproduction when working with the limited spectral gamut of 2D

printers. With the new lexibility ofered by 3D printing, especially

our freedom to choose diferent inks and increase their thickness,

and our focus on painting reproduction, we signiicantly expand the

printer gamut and for the irst time, to the best of our knowledge,

target full spectral reproduction.

Spectral Vector Error Difusion. Spectral vector error difusion

(sVED) [Kawaguchi et al. 1999] is an extension of classical RGB or

CMY color vector error difusion [Klassen et al. 1994]: instead of

performing a classical error difusion algorithm on diferent layers

of inks, the spectrum at every pixel is compared against the spectra

of available primary inks and the spectral error is difused to the

pixel’s neighborhood, wavelength by wavelength. sVED was intro-

duced as a promising spectral reproduction technique that encap-

sulates color separation and halftoning in a single step. It was soon

realized, however, that it sufers from low reproduction accuracy.

Moreover, due to the often-large spectrally difused error, it tends

to change the texture of images [Gerhardt and Hardeberg 2007].

As hinted in Norberg and Nyström [2013], increasing the number

of primaries resolves these issues. This, however, renders the algo-

rithm very ineicient. In our work, we introduce a highly eicient

variant of sVED (ğ 5.4) that uses almost one billion primaries made

of contone stacks.

Painting Reproduction. Our hardware is very similar to the 2.5D

printing introduced recently by Océ. This technology can be used

in a straightforward manner for reproduction of oil paintings. In

the study of Elkhuizen et al. [2014], experts are asked about the

quality of such reproductions in a side-by-side comparison with

the originals. According to this evaluation, while the recreation of

geometry brings the reproduction to life, the color reproduction

quality is low, the visibility of halftones is objectionable, the repro-

duced gloss is too uniform, and the translucency is missing. This

system has also been used to control the gloss of a 2.5D print, in

the context of ine art reproduction [Elkhuizen et al. 2015; Baar

et al. 2015, 2016]. Recently, Elkhuizen et al. [2017] devised a sys-

tem capable of measuring and printing the color, gloss and relief

of paintings. Given the sensitivity of ine art reproduction to ine

color diferences, our work concentrates on high-quality spectral

color reproduction; we leave the integration of color with other ap-

pearance attributes (gloss, relief and translucency) to future work.

Regarding the color prediction of 2.5D prints, the work by Phan Van

Song et al. [2016b; 2016a] has shown promising results. They rely

on a four-lux estimation of the radiative transport equation [Rozé

et al. 2001] in order to predict the spectral relectance and transmit-

tance of a multi-layer print, and the model is further extended to

account for surface roughness [Phan Van Song et al. 2017]. In this

work, we opt for a neural network to perform spectral relectance

prediction. As we show in ğ 5.2, our model outperforms the four-

lux model, while not requiring explicit knowledge of the physical

properties of materials.

Neural-Networkśbased ColorManagement. Neural networks have

a long history of modeling non-linear ink-mixing behavior and

learning the mapping between device control values and device-

independent responses. Kang et al. [1992] apply a cascade correla-

tion network [Fahlman and Lebiere 1990] to characterize 2D printer

ink intensity (CMYK) and the output color in CIELAB space. Colori-

metric accuracy is later improved by using multi-layer perceptrons,

also known as fully-connected feedforward networks [Marcu and

Iwata 1993; Abet and Marcu 1994; Drakopoulos and Subbarayan

2002]. Tominaga [1996; 1998] applies an encoder-decoder model

to learn the same mapping bidirectionally within a single network.

Xu et al. [2007] introduce a neural-networkśbased physical model

that learns the mapping from inks’ physical attributes to the output

color. Littlewood et al. [2002] use neural networks for a color pre-

diction model and formulate a Pareto-optimal problem to optimize

the ink intensities jointly for colorimetric accuracy and additional

user-deined objectives (i.e., usage of inks). Our proposed network

builds on these models and extends them to work with spectral, not

necessarily in-gamut input through a multi-objective loss function.

3 OVERVIEW

We introduce a worklow for painting reproduction with unprece-

dented spectral accuracy, using multi-layer composition of diferent

inks implemented via 3D printing. Given the diiculty of high-

idelity physically-based modeling of the spectral properties of ink

stacks as well as the 3D printing process, we are motivated to ad-

dress the problem using a data-driven approach. To this end, we

design a spectral acquisition setup for accurate high-dynamic-range

scanning of ine art paintings, as well as a printing setup with a

selection of inks used for reproduction (ğ 4). Equipped with the
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Fig. 2. Let: A photograph of one of our printed sample patches. Each color

square is 1mm× 1mm. Right: Our spectral acquisition setup.

experimental setup, we develop our data-driven approach for mod-

eling the spectral behavior of the ink stacks as realized by the 3D

printing process (ğ 5). We design a bidirectional prediction model

between ink stack layouts and their corresponding spectra, and

exploit our ink stack dataset to learn both directions of the model

to enable faithful spectral reproduction. Our novel spectral vector

error difusion complements the łverticalž multi-layer ink stacks by

łhorizontallyž modulating them with billions of possible primaries

obtained through ink stacks. This combined approach of conton-

ing and halftoning leads to high-quality reproduction of paintings,

which we validate with an extensive evaluation and a variety of

results (ğ 6).

4 HARDWARE SETUP

In this section, we describe in detail our hardware setups for the

spectral acquisition of original paintings and the printing process

to realize the reproductions.

4.1 Spectral Acquisition

We use a spectral imaging setup as shown in Figure 2 to capture

both calibration samples and paintings to reproduce. At top, the

Nuance FX multispectral imaging system is coupled with a Coastal

Optical 60mm 1:4 UV-VIS-IR APO macro lens for multispectral im-

age capture. Within the camera, a tunable liquid crystal ilter can be

dynamically adjusted to transmit one narrow range of wavelengths

at a time, while the sensor captures a 1392 × 1040-pixel monochro-

matic image of that spectral band. We perform high-dynamic-

range (HDR) multi-spectral capture [Gkioulekas et al. 2013] within

the spectral range of 420ś720 nm, at 10 nm steps, yielding a 31-

dimensional spectrum per pixel. Note that an alternative to the

tuned LCD ilter would be to use advanced hyperspectral recovery

algorithms that can reconstruct the spectra using wide-band RGB

channels [Baek et al. 2017; Choi et al. 2017].

At the bottom of the setup, we illuminate the sample with two

12-watt ROSCO Daylight (5800K) 12× 12 inch (30× 30 cm) LED

LitePads at 45 degrees to horizontal, centered symmetrically around

the multi-spectral camera. The light emitted by each panel is dif-

fused by a ROSCO #3029 difusing sheet to maximize the lighting

uniformity over the camera’s ield of view. A black acrylic slab

under the camera serves as a backing board to minimize relection

Color Ink product %

Transparent White Penncolor 1
Cyan RJA 1
Magenta RJA 1
Green Lansco 3136 1
Blue Keytstone 3R 0.5
Orange BASF D2905 1
Yellow BASF D1155 1
Red Lansco 1722 1
Violet Lansco 1233 0.15
Black RJA 0.4
Opaque White Penncolor 5
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Fig. 3. Our ink library. Let: The pigments and concentrations used in our

inks, arranged in the order from top layer to botom. Right: The spectra of

saturated color of our inks printed with 30 layers. The color of each line

corresponds to the color of an ink. The higher white line represents the

Transparent White and the lower represents the Opaque White.

and indirect illumination. The entire setup is fully sealed in an

enclosure to eliminate environmental illumination.

We correct radial distortion by photographing checkerboards and

solving for radial distortion parameters using the MATLAB Cam-

era Calibration Toolbox [Bouguet 2008]. We image X-Rite white

balance reference and color-checkers to calibrate and compensate

the light fall-of (vignetting), lighting non-uniformity, and spatial

non-uniformity of pixel gain [Berns et al. 2015]. We normalize the

spectrum of the illumination by dividing every multi-spectral mea-

surement by the multi-spectral measurement of a calibrated X-Rite

white reference target and multiplying by the reference’s spectrum.

4.2 Printing and Inks

We use MultiFab [Sitthi-Amorn et al. 2015], a laboratory-scale,

multi-material inkjet 3D printer with a photopolymer printing pro-

cess similar to commercial printers developed by Stratasys [2016]

and 3D Systems [2013]. Our printer provides greater lexibility

on the selection of printing materials. Its spatial resolution (xy-

resolution) and vertical resolution (z-resolution) are 35µm and

11.25µm respectively. Our printer has ive channels, enabling us

to print with up to 15 inks using three passes of the printer. Our

inks comprise a UV curable clear photopolymer carrier mixed with

commercially available color pigments. We prepare the inks by irst

mixing the carrier and pigment and then milling the inks using a

bead mill.

We have developed a set of 11 inks, including 9 color inks, a

low-concentration white ink, and a high-concentration white ink

(Figure 3). The color inks include the process cyan, magenta, yellow,

and black (CMYK) inks. Following the n-ink 2D printers, we also

add red, green, blue, orange, and violet inks to our printer’s palette.

We emphasize that, though the orange at our disposal shares a

similar response with the red, it is more relective in long wave-

lengths and has a narrower (~30ś40 nm) absorption band at short

wavelengths. Given the importance and dominant use of orange

pigment in art history and its reputation as diicult to be repro-

duced [Ostromoukhov 1993], we decided to include it. Inspired by

the veiling technique used by painters, we add a low-concentration

white ink, which we call transparent white, on top of the ink stack.

The transparent white łveilsž the highly saturated color inks be-

neath it and enables low-saturation colors. The high-concentration
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white ink, which we call opaque white, is the background of our

prints and plays the same role as the paper in 2D printing. The

transparent and opaque white use diferent concentrations of the

same pigment.

The color ink concentrations are optimized for saturation, and

are bounded by the hardware constraints of the printing process. In

principle, we desire highly saturated colors with minimal ink-stack

thickness. We start by inding, for each individual ink, the maxi-

mum concentration that the printer can properly print. Exceeding

these concentrations, causes unstable jetting, printhead clogging

and incomplete UV curing. Then, we experimentally determine the

maximum number of layers required to obtain saturated colors at

their highest concentration. This number depends on the inks and

for a majority of the more transparent inks is around 30 layers. We

adjust the concentration of the remaining inks such that they all

saturate at 30 layers. For example, for some inks, such as violet

and black, the color of the resulting stack saturates more quickly.

Therefore, we decrease the concentration such that they saturate

at 30 layers.

We opt for the highest concentration because when ink concen-

tration increases, the number of layers required to obtain saturated

colors decreases. A lower number of layers is preferred because the

mechanical and optical dot gain, and therefore blurring, increase

with the number of layers [Babaei et al. 2017]. On the other hand,

highly concentrated inks cause pronounced quantization artifacts.

We partially address this challenge by incorporating veiling top

layers using the transparent white, and therefore the concentration

of that ink is tuned to allow the colors beneath to remain visible,

although it is handled in a more principled way by spectral vec-

tor error difusion (ğ 5.4). Finally, we set the concentration of the

opaque white to be as high as possible. This prevents subsurface

scattering and results in a brighter white substrate.

5 MODELING SPECTRAL REPRODUCTION

In this section, we describe our approach to computing a layout

of inks that faithfully reproduces a given spectral relectance. The

bidirectional relation between the spectral relectance and the ink-

stack layout is modeled using a pair of neural networks, one for each

direction, which are learned from a dataset consisting of printed

contone-stack layouts. The spatial modulation is implemented us-

ing a spectral vector error difusion, which also serves a means

of layout discretization. We irst introduce our contoning dataset

(ğ 5.1), which we use to learn our neural-networkśbased forward

model (ğ 5.2), capable of predicting the spectrum of a stack of inks.

The forward model, in turn, is used to train our backward model

(ğ 5.3) that predicts an optimal ink-stack layout for a given spec-

trum. Finally, we describe our spectral vector error difusion (ğ 5.4),

which is followed by practical considerations and details (ğ 5.5).

5.1 Ink-Stack Dataset

We prepare a dataset of contone ink-stacks to train our model.

Throughout this work, the order of inks in each stack is ixed: a

section of 30 layers consisting of any inks, arranged from the most

transparent to the least transparent starting from the top (in the

order shown in the table of Figure 3), followed by additional 20

opaque white layers at the bottom. Although we ix the order of

inks in the ink stacks, the number of layers and that of inks lead to

about 0.8 billion possible layer layouts. To eiciently sample from

all layer-layouts to build our training dataset, we introduce the fol-

lowing heuristic sampling rules to maximize the coverage of the

spectral gamut while keeping the number of samples manageable.

In the following, the łcolorž inks include the transparent white as

well, i.e., denote the irst ten inks in the table of Figure 3, while still

excluding the opaque white ink.

• Due to the smooth change of spectral properties of tradi-

tional inks, combinations of a large number of diferent inks

does not result in large spectral variety [Rosen et al. 2004].

We thus limit the maximum number of diferent color inks

in a stack to 5.

• We limit the number of color ink layers depending on the

number of diferent inks used in the stack. Speciically, when

using 3, 4, or 5 color inks, we set the maximum number of

color layers to 10, 15, or 20, respectively. The remaining lay-

ers are complemented with additional opaque white layers

at the bottom.

• If an ink stack contains 2 or 3 łdarkž colors, we further limit

the number of color layers to 8 or 4, respectively. Dark colors

are the colors that have high absorption and/or scattering,

which in our case are blue, violet, and black inks.

• For any layer-layout consisting of more than 2 color inks, we

enforce the layer increment step of an ink to be 2.

We obtain 20,878 valid layer layouts following these rules. Each

ink stack occupies a 1mm× 1mm square in the calibration print.

We aggregate 13× 16 ink stacks into one calibration patch, result-

ing in the total of 101 patches (Figure 2, left). Within each patch,

the neighboring ink stacks are separated by a 0.3mm wall made of

transparent material to prevent pixel cross-talk. We favor transpar-

ent wall over black pigment wall for both better curability and free

of color contamination, with the black backing further minimizes

relection, resulting negligible sub-surface scattering. To ensure

measurement accuracy, the spectral relectance of each ink stack is

calculated by averaging the measurement over the 0.5mm× 0.5mm

central region of each square.

Based on the maximum operation area of our printer, we print

4× 4 patches at each printing iteration. Printing proceeds in 3

passes, and is done upside downÐi.e., the topmost layers are printed

irst, in order to achieve a difuse surface inish. In the irst pass,

the top white layers and the transparent wall are printed and cured.

In the next two passes, the irst 5 color layers and the next 5 color

layers are sequentially printed. Completion of all three passes takes

approximately 3.5 hours. The HDR multi-spectral acquisition takes

5 minutes to complete measurement for one calibration patch.

5.2 Spectral Prediction Model

Spectral relectance is represented as a 31-dimensional real vector,

each element denoting the relectance at a discretized wavelength.

A layout is represented as a 11-dimensional non-negative integer

vector, encoding the numbers of layers used for each ink. We learn

the spectral prediction function F : Z11
+

→ R31
+
, which maps a lay-

out ξ to its spectral relectanceψ, from our ink-stack dataset (ğ 5.1).
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Spectrum

Layout

Spectrum

Layout prediction model Spec. prediction model

illuminant

Loss

Fig. 4. Illustration of our network structure. F denotes our spectral predic-

tion model (ğ 5.2), which is used to estimate the spectrum of the predicted

layout by our layout prediction model B (ğ 5.3) and provides the means to

measure the quality of it. Q represents our sot quantization layer (ğ 5.4).

ψ denotes the spectrum and ξ the layer-layout vector. Both F and B are

implemented as fully-connected feed-forward neural networks.

Given the low dimensionality of our problem, we model the func-

tion using a straightforward fully-connected feed-forward neural

network (also known as a multi-layer perceptron) [Cybenko 1989].

Our model includes 4 hidden layers, each with 300 neurons (hidden

units), forming a network that is wider than it is deep. Both the

hidden layers and the inal output layer use the rectiied linear unit

(ReLU) as a nonlinear activation function.

5.2.1 Spectral Loss. We optimize the network for the minimal

spectral error, which is deined as a Euclidean distance between the

prediction and the measurement (scaled by the square root of the

number of wavelength bands, in accordance with the practice in

colorimetry literature [Imai et al. 2002]):

Espec(ξ ,ψ∗) = 1
√
31





 F(ξ ) −ψ∗ 




2 . (1)

In our implementation, we normalized the input ink layout vector

by the total number of layers (i.e., 30) such that each layout sums

to one.

5.3 Layout Prediction Model

Ultimately, we are interested in the inverse function of F, through

which we retrieve the optimal layout for a given spectral relectance.

Given that F is a diferentiable function that maps layouts to spec-

tra, a straightforward approach for the inverse problem would be

ixing F’s parameters and running gradient descent on layouts by

minimizing the spectral error. However, the distribution of spectra

over layouts will likely be highly non-uniform and multi-modal.

Further, as the layout is inherently discrete, its relationship with

the spectrum forms a non-convex space. In practice, we ind that

running gradient descent directly on a randomly initialized layout

usually leads to a local minimum and results in a poor prediction.

To pick a good initial guess, reducing the risk of being trapped

in a local minimum, we could train a separate network that would

learn the inverse mapping of F and provide a reasonable initial lay-

out estimate from a target spectrum, from which we could initiate

the gradient descent through F. However, it is diicult to measure

how good one predicted layout is compared to another, since the

L2 diference between layouts does not translate directly to the

spectral diference, in particular when diferent layouts could lead

to an identical spectrum. A better alternative is to construct an

encoder-decoder model that uses F to łdecodež the predicted layout

to the spectrum and evaluate the error with respect to the target

input spectrum; i.e., to use the forward network F (decoder) to set

up the loss and train the reverse mapping (encoder) through back-

propagation directly [Tominaga 1996] (Figure 4).

We deine a layout prediction function B : R31
+

→ Z11
+

that pre-

dicts an optimal layout given a spectrum and is implemented by

another fully-connected neural network. B consists of 8 hidden

layers, deeper than F, as it attempts to learn a more complicated

distribution. Each hidden layer consists of 160 neurons with the

ReLU activation function. As for F, the layout vector is normal-

ized. A softmax layer is applied to the output layer to guarantee the

validity of the layout estimateÐnonnegative and summing to one.

5.3.1 Perceptual Color Loss. We irst experimented with train-

ing Bwith the spectral loss (1) only. However, we observed that the

reproduced spectral relectance (from the predicted layout) of an

out-of-gamut target spectrum varied noticeably across trained mod-

els, although all shared a similar L2 error. Since we do not explicitly

perform spectral gamut mapping nor apply any gamut constraints,

the trained model was allowed to freely select any in-gamut spec-

trum minimizing the L2 error. We, however, wish the network to

predict the one among all solutions that also minimizes the percep-

tual color diference under a variety of standard illuminants and

common light sources [Morovič et al. 2012]. To implement this, we

deine a perceptual color loss over chosen illuminants:

ELAB(ξ ,ψ∗) =
∑

i

∆E∗
ab

(

LABIi (F(ξ )), LABIi (ψ∗)
)

, (2)

where LABIi (·) represents a series of transformations from a spec-

trum to CIEXYZ coordinates under the illuminant Ii with the CIE

1931 2° standard observer, and further to CIELAB color. Each Ii de-

notes the spectrum of a particular illuminant, and for ∆E∗
ab

we use

the CIE 1976 color diference (∆E76) in CIELAB space [Wyszecki

and Stiles 1982]. For this perceptual loss, we used 8 diferent light

sources: halogen, incandescent, luorescent (2700K), Philips Hue

LED (5000 K), ROSCODaylight LED (5800 K) as well as the CIE stan-

dard illuminants D65, D50 and A. The ∆E76 is chosen for simplicity;

∆E94, also diferentiable, could as well be an accurate perceptual

loss metric [Kauvar et al. 2015]. Although more accurate, ∆E00 is

not diferentiable.

We observe more stable and consistent training and preferred

results with the addition of the perceptual loss (2). We emphasize

that, for in-gamut input spectra, adding the perceptual loss will not

misguide the network to learn metameric pairs since only the de-

sired spectra drive both the spectral loss and perceptual loss to zero.

However, training with only the perceptual loss also yields subop-

timal results, since the mapping from a low dimensional CIELAB

space to a high dimensional spectral space is multi-modal. With-

out the measurement of spectral idelity and under a set of limited

illuminants only, the network can easily converge to a metameric

spectrum that gives an equivalently low perceptual diference.

5.3.2 Layer Thickness Loss. In addition to minimizing the per-

ceptual diference, we also minimize the number of color layers
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(color inks plus transparent white) in a layout estimate (exclud-

ing the twenty or more opaque bottom white layers). Babaei et

al. [2017] show that fewer color layers result in smaller minimum

feature size and reduced optical and physical dot gain in color con-

toning. In both 2D- and contoning-based colorimetric reproduction,

the mapping from a CIELAB color to CMYK ink intensity is multi-

modal, which is a result of the trade-of between the black ink (K)

and three chromatic inks (CMY). Our ink set also shares this prob-

lem, and the layout with the thickest black layer often results in

the minimal total layer thickness (i.e., the number of color layers).

In addition, given the signiicantly increased number of primaries,

a target spectrum may also be reproduced by combination of dif-

ferent inks. Therefore, to encourage the use of a minimal number

of color inks, we deine the layer thickness loss:

Ethick(ξ ) =
10
∑

i=1

|ξi | = ∥ξ ∥1 − |ξ11 | , (3)

where ξ11 is the number of opaque white ink layers in the predicted

layout.

The backward function B is trained to minimize the following

loss over our training dataset:

E = Espec + αELAB + γEthick , (4)

with α = 10−3 and γ = 10−3.

5.4 Spectral Vector Error Difusion

When using the backward model in order to print an ink layout best

reproducing a given spectrum, we witness two problems which, at

irst glance, seem independent. First, a denormalized layout pre-

diction of B has continuous values and thus has to be discretized

to integer layers for actual printing. Second, because of the high

concentration of our inks, a mere contone-based model would suf-

fer from color quantization [Babaei et al. 2017]. Although the use

of transparent white mitigates this problem, quantization artifacts

are still visible at regions with smooth color gradients. This is in

essence a halftoning problem: we have a spatially-varying continu-

ous input (from B) that needs to be represented with a discrete ink

layout at each location. Halftoning techniques simulate continu-

ous tone images through spatial modulation of a limited number of

primaries [Baqai et al. 2005].

5.4.1 Layer Layout Discretization. A straightforward approach

would be to round the continuous output to the nearest integer. Al-

ternatively, we can enumerate all possible combinations of round-

ing up and down for the prediction on the thickness of each ink,

which would amount to 211 possibilities, and search for the best

combination, in terms of spectral accuracy, in a brute-force manner.

Since the complexity of enumeration grows exponentially, it

would be preferable if the network could directly generate integer-

valued layouts. However, rounding is not diferentiable, and thus

cannot be directly used during training. To address that, we apply

a soft quantization layer to encourage the network to predict close-

to-integer layouts, mitigating the inluence of a posterior rounding

operation on the prediction. Our soft quantization layer is placed

between the spectrum prediction network F and the layout predic-

tion network B, such that the loss is calculated on (soft) rounded

layout predictions. The soft quantization layer is constructed as a

sum of cascaded soft unit-step functions:

Q(ξi ) =
1

Ns

Ns
∑

k=1

s(Ns · ξi − (k − 1)) , (5)

where the number of steps equals to the number layers Ns = 30,

and the unit-step function s(·) could be any sigmoid function that

has a steep transition around a half and has vanishing gradients

outside the unit interval. We use a shifted logistic function:

s(ξ ) = σ (κ · (ξ − 0.5)) , (6)

where σ (x) = (1 + exp−x )−1 and κ controls the steepness of the

transition, which we set κ = 15 for training our network.

5.4.2 Error Difusion. Since in contoning, the only way of mod-

ulating color is to add or remove a layer, when highly-concentrated

inks are used, the color space is not covered as densely as required,

especially at low-saturation areas of the gamut. Our solution to the

color quantization problem is to perform an error difusionwith con-

tone stacks as primaries. This bears resemblance to spectral vector

error difusion (sVED) algorithms. However, our proposed method

is signiicantly more eicient. Unlike sVED algorithms that for each

pixel look for the nearest neighbor among all primaries, which in

our case spans 0.8 billion 31-dimensional points, we simply round

the continuous layout predicted by B and feed the rounded layout

to F. The resulting spectrum is subtracted from the target spectrum

to obtain the spectral error vector. The spectral error is then car-

ried over to the neighborhood pixels, wavelength by wavelength,

according to the weights speciied by the Floyd-Steinberg [1976]

error difusion kernel. The subsequent prediction for the neighbor-

hood pixels then takes into account the carried-over spectral error.

To further improve the computational eiciency, we parallelized

the error difusion following the optimal scheduling proposed by

Metaxas [1998].

The advantage of this approach is twofold. First, the discretiza-

tion of the continuous layout from the backward model can be a

simple rounding, which is orders of magnitude faster than a search

among the huge space of possible ink stacks. More importantly,

the color quantization artifacts are removed through spatial mixing

of a large number of contone-stack primaries. Unlike with RGB

or CMYK dithering, the extremely large pool of primaries makes

halftoning artifacts virtually invisible, since for any input spectrum

there exists a very similar łprimary.ž

5.5 Training Protocol

We randomly split (and ixed) our spectral ink-stack dataset into a

training set of 18,878 samples and a test set of 2,000 samples. We

veriied that the number of layers for each color ink in the test set

follows the distribution in the entire dataset.

We train our spectral prediction network F using the spectral

loss (1) only. After the training of F is inished, we train the lay-

out prediction network B using the combined loss (4), with the

weights of the trained F ixed. During the reproduction, a target

multi-spectral image is fed to B to yield an optimal layout predic-

tion, which subsequently is quantized by the spectral error difusion.

The resulting (denormalized) layout map consists of 11-dimensional
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Table 1. The accuracy of diferent spectral reflectance prediction models, in

terms of the spectral error Espec (Eq. 1) and the CIEDE2000 (∆E00) [Luo et al.

2001] under three illuminants. We report the mean, standard deviation,

median, and maximum. The lowest errors are denoted in boldface.

Espec ∆E00 (D65) ∆E00 (TL84) ∆E00 (A)

Mean SD Mean SD Mean SD Mean SDModels

Median Max Median Max Median Max Median Max

6.91 2.82 9.08 5.67 9.13 5.53 9.11 5.20
Contoning

5.48 61.73 8.56 41.49 8.56 41.73 8.65 40.77

4.90 2.82 9.89 5.67 9.02 5.53 8.26 5.20
1C-KM

4.22 25.73 9.12 43.37 8.14 34.37 7.31 35.33

3.83 3.09 6.64 4.03 6.13 3.96 5.72 3.93
2C-KM

2.99 34.29 5.85 39.79 5.24 40.10 4.80 40.80

1.99 1.60 3.57 2.84 3.70 2.85 3.54 2.70
4-Flux

1.60 27.40 2.92 30.45 3.03 30.87 2.93 27.46

1.44 1.06 2.50 1.58 2.38 1.58 2.20 1.69
Ours

1.16 10.95 2.19 11.79 1.97 11.36 1.72 12.24

vectors, each of which dictates how many layers of each ink have

to be deposited in order.

Both networks are trained using Adam [Kingma and Ba 2014], a

stochastic optimization algorithm. We use an initial learning rate

of 10−3 for F and 10−4 for B, with β1 = 0.9 and β2 = 0.999 for both

models. Training samples are drawn randomly from the training

dataset. Both models are trained for 500,000 iterations with batch

size of 64. A learning rate decay of 0.1 is employed every 50,000

iterations. Weights are regularized by penalizing their L2 norm

weighted by 10−5.

6 RESULTS AND EVALUATIONS

We evaluate the performance of our method both quantitatively

and qualitatively. In addition to individual spectra that have been

historically considered important to reproduce, we validate our full

reproduction pipeline with a number of real paintings, which are

intentionally painted to maximize the diversity in color, and include

challenging textures and smooth gradients.

6.1 Model Evaluation

In this section, we evaluate our spectral and layout prediction mod-

els, and spectral vector error difusion. We also provide the repro-

duction quality of our model tested on historically important colors.

6.1.1 Spectral Reflectance Prediction Model. We compare our

spectral relectance prediction model with several physically-based

and data-driven models: the one-constant KubelkaśMunk [Kubelka

and Munk 1931] and two-constant KubelkaśMunk models [David-

son and Hemmendinger 1966] (1C-KM and 2C-KM, respectively);

the four-lux model [Rozé et al. 2001]; and the color contoning

model [Babaei et al. 2017]. We follow diferent strategies for build-

ing these models. For 1C-KM model, where the model parameters

(absorption to scattering ratio at each wavelength) are straight-

forward to compute, we use measurements. For more advanced

models, i.e., 2C-KM and four-lux, since measuring their parame-

ters is prone to error, we it their parameters using our training set

and evaluate the model accuracy on the test set. The itting proce-

dure ensures the maximum capacity of these models as it does not

rely on physical measurements. For training data-driven models
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Fig. 5. (a) Comparison of test spectra from our contoning ink stack dataset

predicted by our spectral prediction model F and by the 4-flux method. (b)

Projection of predicted spectra onto CIELAB space (under D65) with the

dot volume proportional to the spectral error Espec.

(all except 1C-KM), including ours, we use the training samples of

our dataset (ğ 5.1).

In Table 1, we show the spectral and colorimetric accuracies of

all models. We report the statistics of the spectral error and ∆E00
under three illuminants, D65, TL84, and A. Under all metrics, our

model achieves a signiicantly lower prediction error, and is on av-

erage close to the measurement noise (1%), which was measured

through repeated scanning. In Figure 5(a), we show the quality of

spectral prediction with a number of randomly-drawn test sam-

ples of varying spectra, where our prediction closely follows the

measured spectra. In Figure 5(b), we plot the predicted test set spec-

tra (2000 samples) in CIELAB space with dot volume proportional

to the spectral error. In the supplementary material, we provide

additional visualization of equivalent 2D plots with 9 diferent lu-

minance bins. The standard deviation of mean spectral error at

each quadrants is 0.10%, showing no obvious bias towards towards

a particular tone. The samples at high luminance region are more

sparsely populated, likely due to the use of high concentration inks.

Using more layers with lower concentration shall provide denser

coverage at the cost of more severe blurriness.

The merit of physically-based models is that they rely on only

a limited physical measurements. Therefore, they are scalable to a

large number of inks and do not require a large dataset and lengthy
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Table 2. The accuracy of our layer prediction model trained with diferent

objectives, measured in the spectrum error Espec (Eq. 1) and the CIEDE2000

∆E00 under three illuminants. We report the mean and standard deviation.

The lowest errors are shown boldface and the second lowest underlined.

Espec ∆E00 (D65) ∆E00 (TL84) ∆E00 (A) thickness
Losses

Mean SD Mean SD Mean SD Mean SD Mean SD

(a) Espec

ś 0.81 0.49 1.71 1.28 1.84 1.54 1.52 1.53 16.20 3.32

rounded 2.28 2.39 3.75 2.41 3.64 2.59 3.17 2.39 15.73 3.36

(b) Espec + ELAB
ś 0.81 0.50 1.20 0.93 1.37 1.17 1.17 1.18 16.57 3.16

rounded 2.32 2.31 3.44 2.32 3.25 2.24 2.94 2.10 16.13 3.28

(c) Espec + ELAB + Ethick
ś 0.82 0.49 1.34 0.91 1.50 1.15 1.31 1.20 14.43 3.17

rounded 2.52 2.38 3.71 2.38 3.57 2.34 3.13 2.07 14.03 3.26

(d) Espec + ELAB + Ethick w/ soft quantization layer

ś 1.20 0.71 2.02 1.27 2.16 1.44 1.82 1.36 14.72 3.20

rounded 1.60 1.09 2.70 1.62 2.65 1.61 2.31 1.53 14.80 3.23

training process required by data-driven models. While they usu-

ally work well within a limited operational range, these models

have diiculties to incorporate the added complexity of the print-

ing process. The contoning model, which is also a data-driven

method, assumes only absorbing materials and is unable to predict

the spectral properties of our complex stack that includes diferent

inks with a wide range of absorption and scattering.

6.1.2 Layer Prediction Model. In order to evaluate our layout

predictionmodel, we compare the performance of themodel trained

with varying losses (Table 2). We report the errors using the same

metrics as in the spectral prediction model, measured from the

undiscretized network output and the discretized output, which

has been rounded to the nearest integer.

With a negligible diference on the achieved spectral error, adding

perceptual loss and layer thickness loss results in roughly 30% re-

duction on the perceptual diference, and one layer reduction on the

total color layers. However, we choose to apply small weights to

the perceptual loss and layer thickness loss, since a high perceptual

loss weight results in a metameric reproduction. A high weight for

layer-thickness loss induces high quantization errors. Depending

on the application and number of inks, weights for perceptual loss

and ink thickness loss may be further tuned.

The layer prediction model could be directly trained without the

pre-trained spectral prediction model as a loss, where the loss itself

would also be learned through, e.g., a conditional generative adver-

sarial network [Isola et al. 2017]. We experimented with a model

consisting of our B as a generator and a fully-connected feedfor-

ward network with a 2-way softmax at the end, resembling our F

but performing binary classiiation, as a discriminator, trained with

our loss terms. We found, however, that a such-trained model was

prone to overitting with poor generalization.

6.1.3 Spectral Vector Error Difusion. We evaluate the perfor-

mance of our proposed soft quantization layer and sVED. Figure 7

presents the simulated reproduction of a painting under D65 illu-

minant using varying conigurations. Our soft quantization layer

helps reduce the errors introduced by rounding (e vs. f). While

the local (per-pixel) brute-force enumeration (d) helps alleviate arti-

facts, the use of our spectral error difusion greatly improves overall

reproduction quality (c). Combined with the brute-force search (b),

the sVED shows the best results, with less noticeable graininess,

which can be best seen in the electronic version of the paper when

zoomed in. Yet the sVED on both the brute-force enumeration (b)

and nearest-integer rounding (c) exhibit comparable quality, but

with rounding exhibiting better run-time performance (see ğ 6.3).

We note that, at high luminance and region with smooth gradient

(last row), the halftone pattern becomes more visible, likely due to

the relatively sparse coverage over the particular gamut area and

the high color contrast.

The efectiveness of the soft quantization layer is validated quan-

titatively in Table 2. The reproduction error of soft-quantized re-

sults before rounding (d; irst row) is slightly higher than that of

the results without the soft quantization layer (aśc; irst rows each).

However, while the error increases sharply after rounding with-

out the soft quantization layer (aśc; second rows), there is a much

smaller increase for the soft-quantized results (d; second row).

6.1.4 Color Gamut Evaluation. We compute the color gamut

volume of our proposed 10-ink setup in CIELAB color space un-

der D65 illumination. We densely sample 16.8 million layouts, in-

cluding all possible layouts for stacks with up to 5 inks as well as

layouts for stacks with more than 5 inks at a minimal increment

step of 2. The layouts are fed to the our spectral prediction model

F to obtain the resulting spectra. We reconstruct the non-convex

gamut surface of our CIELAB point cloud using the ball-pivoting

algorithm [Bernardini et al. 1999]. We then compute the volume

enclosed by this surface, which for our 10-ink setup is 79% of the

sRGB gamut volume. This may be compared to 42% for a standard

CMYK 2D printer based on halftoning, 45% for a typical CMYK con-

toning system, and 65% for a luorescent-ink printer (CMYK plus

two luorescent inks). We observe that our gamut is signiicantly

larger than the luorescent-ink gamut, the state-of-the-art method

for wide-gamut printing [Rossier 2013]. In Figure 6, we visualize

the color gamut comparisons over several iso-L∗ slices in CIELAB.

As shown in the igure, our 10-ink setup provides additional gamut

coverage over color contoning most prominently at green, red, or-

ange and pink tone regions, particularly when the luminance is

high. To account for the sRGB gamut, further incorporation of blue

and purple tone primaries would be necessary.

6.1.5 Reproducing Historical Pigments. We evaluate the ability

of our proposed model to reproduce real pigments that have been

widely used for artwork. We use the FORS spectral database, which

contains 54 pigments of historical interest [Cosentino 2014]. This

dataset contains the spectra of the pigments in pure powder form,

as well as mixed with diferent binders (6 sets in total). Among

these, we reproduce the measured spectra of pigments mixed with

gum arabic, which gives the most saturated colors.

In Figure 8, we compare the spectra and the resulting color un-

der the D65 illuminant predicted by color contoning [Babaei et al.

2017] and our model (with rounding enumeration), to the exhaus-

tive search over 16.8 millions of densely sampled spectra which we

used to compute the contone color gamut (ğ 6.1.4). The color con-

toning achieves Espec = 4.02% and ∆E00(D65) = 5.64 on average,
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Fig. 6. Comparison of our 10-ink gamut with two other printing methods and sRGB (under D65). The figure shows a∗b∗ slices at diferent L∗ values.

while our network achieves Espec = 2.60% and ∆E00(D65) = 4.77,

compared to Espec = 2.31% and ∆E00(D65) = 2.39 of the exhaustive

search. The spectral error and LAB error of individual pigments

are reported in the supplementary material Table 1. For most in-

gamut spectra, our network prediction yields results very close to

(or indeed identical to) exhaustive search over 16.8 million samples.

We identify 12 challenging (out-of-gamut) spectra that are not

well reproduced by our ink set (Espec > 5% or ∆E00(D65) > 7 when

predicted by our model). For example, the cobalt blue (row 4 at col-

umn 8 in Figure 8; R4C8 hereafter) and smalt (R5C4) share a steep

tail after 700 nm, and similarly, the cobalt violet (R5C8) possesses a

steep head before 450 nm, all of which cannot be reproduced by our

violet without causing a fat tail from 630-700 nm or a fat head from

450-500 nm. The fat head also appears in the carmine lake (R2C3),

whose ramp starts from 600 nm and is 50 nm behind the spectra of

our red, orange andmagenta. The cadmium yellow (R3C7) starts the

ramp at 450 nm, which is 30 nm earlier than our saturated yellow in

and causing a lifted yellow spectra (with white layers) to match the

curve. The downhill of lithopone (R6C9), which starts at 630 nm,

also cannot be reproduced, given that none of our inks’ spectra has

a descending trend after 600 nm. Overall, our current ink set has

diiculties in reproducing yellow- and gray-tone pigments. Ulti-

mately, we believe a further expanded and more carefully selected

ink set is necessary to reproduce all pigments’ spectra well.

6.2 Painting Reproduction Evaluation

We scanned small oil paintings with varying scales, color and tex-

ture characteristics, using the same spectral acquisition setup we

used for measuring our dataset. During capture, the distance be-

tween the camera and painting is adjusted to match the measure-

ment resolution to the printer’s spatial resolution (35µm). For

paintings larger than the camera’s ield of view, we scan them

part-by-part and stitch the measurements into a single spectral im-

age [Brown and Lowe 2007].

We captured the photographs of all results reported in the paper

using a Canon 5DMark-III DSLR camera with a Canon 100mm f/2.8

macro lens. The photos of the paintings and their reproductions

were taken simultaneously in a single shot under the same light

source, then cropped appropriately. We used a luorescent light

and a halogen light to represent cold and warm color temperatures.

Additionally, we used a Philips Hue light, which includes diferent

colors of LEDs inside to simulate diferent lighting.

We include the high-resolution images of both simulations and

physical printings in our paper, and refer the readers to the elec-

tronic version of it, where more details of our reproduction can be

seen and examined when zoomed in.

In Figure 9, we show the side-by-side comparisons of the selected

paintings patches and our printed reproductions under diferent

physical light sources. The physical dimension of each painting

patch is 3.2cm× 2.4cm. Our results faithfully reproduce a variety

of color used in real paintings under a wide range of color. In par-

ticular, the paintings exhibits diferent characteristics: the łwater

lilyž is characterized by its desaturated colors and smooth gradients,

while the others use more saturated colors.

We compare our reproduction with the color contoning

method [Babaei et al. 2017] in Figure 10, using simulation. Our

sVED based on 10-ink stacks outperforms the CMYK contoning

method with more faithful reproduction of various colors. This

is expected as our gamut volume is signiicantly larger than the

color contoning gamut. In contoning, the ink concentrations are

kept low to prevent color quantization. Our use of more saturated

inks help achieve a larger gamut at the cost of more prominent

color quantization, which is handled by our spectral vector error

difusion method (the halftoning pattern can be examined in the

electronic version when zoomed in).

In Figure 11 we show the printed reproductions of two paint-

ings generated using our 10-ink pipeline, and the same pipeline

but with our CMYK inks only. Thanks to our sVED method, which

allows for high-concentration inks, we can achieve a signiicantly

large color gamut even with CMYK. However, although our highly-

concentrated CMYK inks yield a large gamut close to a luorescent-

ink printer (65% of sRGB), the 10-ink method shows consistently

better reproduction quality under diferent lights. This justiies the

use of a larger number of inks for high-idelity spectral reproduc-

tion. For a quantitative evaluation, we also show the spectra of some

sampled points from the original painting, the reproduction by our

10-ink method, and the reproduction by our CMYK inks, along

with spectral and colorimetric errors. In general, the CMYK set,

even though at high concentration, is not able to reproduce some of

spectra faithfully (on average Espec = 6.22% and ∆00 = 7.97). Our

10-ink printer, on the other hand, gives excellent spectral match

between the paintings and prints (on average Espec = 2.78% and

∆00 = 3.80). Note the spectral diference in the inset of Figure 11,

where the 10-ink set consistently gives less spectral error. Con-

cerning colorimetric reproduction, the 10-ink set outperforms or
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(f )  R (w/o SR)    (e) R(d) BF(b) SVED+BF(a) GT (c) SVED+R

Fig. 7. Comparisons of diferent quantizationmethods. (a) ground truth; (b)

spectral vector error difusionwith brute-force enumeration; (c) spectral vec-

tor error difusion with nearest-integer rounding; (d) per-pixel brute-force

enumeration; (e) per-pixel nearest-integer rounding; (f) per-pixel nearest-

integer rounding without using our sot quantization layer. The results in

(bśe) were created using the network with the sot quantization layer. Each

row at botom corresponds to a rectangular region in the painting at top.

Paintings ©Azadeh Asadi.

does equally well compared to the CMYK. There are a few excep-

tions, especially out-of-gamut spectra, such as spectrum number

3 in the second painting, a brilliant red color. Although the color

reproduction accuracy of the CMYK set is relatively good, it has

unacceptable spectral accuracy, indicating the risk of a metameric

Ground Truth Exhaustive Search Network Prediction
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Fig. 8. Comparison of historical pigment spectra reproduced by the pro-

posed nerual network and the nearest neighbour search. The white dots

mark the challenging spectra that are dificult for our ink set.

reproduction. On the other hand, the 10-ink reproduction has much

better spectral reproduction accuracy, while the colorimetric error

is high, typical for out-of-gamut colors.

The reproduced paintings have to undergo a series of color trans-

formations (e.g., by the camera, publishing software, and the printer

or display) to be presented in this paper, whether it is printed or

viewed electronically. Thus, the diference between our reproduc-

tions and those by other methods may have been washed out or

become subtle. To further provide evidence of the signiicant difer-

ences between them when seen in person, we carried out a small

perceptual study, in which we compared our 10-ink with our CMYK

prints. We asked participants to evaluate the color idelity of the

two candidate methods as compared to the original, under three dif-

ferent lighting conditions (luorescent at 3500 K, LED at 5800 K, and

cloudy daylight). We asked participants to evaluate printed patches

on a scale between −3, indicating a strong preference against ours,

and +3, for ours, with 0 being indiferent. Based on a study in-

volving 8 participants, the mean preference score was +1.69 with

standard deviation of 1.14, which shows a consistent and statisti-

cally signiicant (p < 0.001) preference for our reproduction.

6.3 Run-time Performance

Our model is implemented using TensorFlow [Abadi et al. 2016],

and trained and tested on an NVIDIA Titan X (Pascal) GPU. It takes

about 15 minutes to train the spectral prediction network F and

about 45 minutes for the layout generation network B. Note that

these are one-time computations and once the model is built, it

can be used for diferent input paintings. To predict the layout

of a painting consisting of one million spectral pixels, it takes on

average 0.3 seconds.

Our spectral vector error difusion is implemented in Python

(with NumPy) and TensorFlow. We follow the optimal scheduling
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Fig. 9. Reproduced paintings using our method. We show 4x2 sets of our printed reproductions. For each set, we show our printed reproduction with CMYK

inks (top row), the original painting (middle row), and our printed reproductions with 10 inks (botom row). Each painting is lit by four diferent light sources

(halogen (2750K), Phillips Hue LED (Warm), fluorescent (5000K), and Phillips Hue LED (Cool)), which are shown so ordered. The spectrum of each light is

illustrated in the supplementary material Figure A.1. Paintings ©Azadeh Asadi.
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(a) Ours (b) Original (c) Contoning

Fig. 10. Simulated comparisons under D65 illumination of our method to

the CMYK contoning. Our reproduction (a) of three paintings are com-

pared against the original painting (b) and the CMYK contining method

(c) of Babaei et al. [2017]. Our method provides consistently more faithful

reproductions to the original. Paintings ©Azadeh Asadi.

pattern proposed by Metaxas [1998] to batch the evaluations of un-

correlated pixels at each time step, which signiicantly reduces the

number of network inference calls. During error propagation, a

damping factor between 1 and 0.6 (for highly saturated paintings)

is applied to the error difusion kernel to prevent the algorithm

from diverging. Error difusion on a painting of one million spec-

tral pixels takes on average 23 seconds using simple rounding and

590 seconds using brute-force rounding enumeration.

For physical spectral prediction models, although the forward

model can be very eicient, the backward model needs a model

inversion with iterative optimization algorithms, which renders

the print-data generation into a slow process. We tested the color

contoning run-time performance using our training dataset. The

forward model takes more than 40 hours in MATLAB on a Mac-

Book Pro with a 2.8 GHz i7 processor and 16 GB of RAM. This is

because the model inverts a large weight matrix (n ×n , n being the

number of training data samples) for predicting every layout. We

did not test the contoning backward model, as a nearest neighbor

search among 0.8 billion points in a 31-dimensional spectral space

is intractable.

6.4 Limitations and Future Work

Our experiment with the historical pigments revealed that our ink

library is suboptimal, unable to faithfully reproduce certain spec-

tral curve shapes, such as cobalt blue. An exciting extension of our

system is to further expand the ink library. With an extended ink

library, an eicient painting-speciic ink selection algorithm would

be required to allocate inks from the library to the limited number

of printer channels.

A data-drivenmodel itswell with our current problem size. How-

ever, for maximum scalability, striving for more advanced physical

prediction models is an important research direction for the future.

For this, one can take inspiration from physically-based models

for rendering of layered materials [Jakob et al. 2014]. Another ap-

pealing direction is to construct a physically-aware neural network

that, instead of working with ink labels, is built on proper spectral

measurements. By learning from the physics of the problem, we

expect the resulting network to be generalizable to arbitrary inks

not present in the training set. However, we expect a signiicant
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Fig. 11. Comparisons of the printed results and measured spectral re-

flectance between our CMYK reproduction, 10-ink reproduction and the

original painting. In the lily example (top), the reconstruction of green and

purple hues are extensively examined, which are known to be dificult for

CMYK. In the botom example, we examine a wide varity of both satu-

rated and desaturated colors. In both results, 10 inks result consistently

ourperforms the CMYK both perceptually and in terms of spectral RMSE.

Paintings ©Azadeh Asadi.

larger training set to be necessary given the increase in the number

of degrees of freedom.

Compared to the previous contoning method [Babaei et al. 2017],

the dot gain in our approach is signiicantly lower due to the thin

(high-concentration) ink stacks. Consequently, the blur is much

less signiicant without any preprocessing [Babaei et al. 2017] or

optimizing the material arrangement for the least crosstalk [Elek

et al. 2017]. Having said that, we believe that improving the blur
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problem through careful tuning of material thickness and concen-

tration, optimizing halftoning and contoning parameters, and ind-

ing optimal material arrangements [Elek et al. 2017] is necessary

for high-quality reproduction.

Finally, a painting reproduction without considering the rich

spatially-varying gloss and translucency found in many paintings

as well as the 3D trail of the brush-stroke is far from complete. In-

corporating gloss and microgeometry will also improve the spectral

reproduction by recognizing the unavoidable highlights measured

during the capture, and compensating for them by surface relection

(and not by difuse color). Although there have been recent eforts

in combined fabrication of these appearance attributes Elkhuizen

et al. [2017], there is still a long way to go for archival-quality fab-

ricated ine art.

7 CONCLUSIONS

We propose a complete pipeline capable of reproducing spectral re-

lectance using a 3D printer. To this end, we present a data-driven

approach for predicting the optimal stack of diferent inks. Our

framework provides accurate and eicient forward and backward

predictions. Our proposed spectral model outperforms state-of-the-

art physical and data-driven prediction models, mostly by large

margins. We demonstrate the efectiveness of our worklow by re-

producing a number of challenging oil paintings, painted by our

artist collaborator [Asadi 2017]. We further propose a novel spectral

vector error difusion that combines both halftoning and contoning

techniques in a complementary manner to leverage the potential of

both methods. Our sVED algorithm uses error difusion on a very

large number of potential contone stacks, very eiciently, thereby

resolving both layout discretization and color quantization prob-

lems. Our framework takes the irst step in the exciting direction of

ine art reproduction, and we hope it triggers more works, leading

to the exploitation of rapid advances in fabrication technologies

and computational techniques to protect our cultural heritage.

Acknowledgement. We highly appreciate the help by David Kim

for formulating our inks. We would like to thank Azadeh Asadi

for painting all presented paintings, Todd Zickler and Ioannis

Gkioulekas for spectral camera hardware and software, and Hos-

sein Amirshahi for pointing to suitable pigments. We also thank our

pigment providers: BASF, Lansco Colors, Penn Color, Sun Chem-

ical and Toyo Ink Group. Vahid Babaei and Changil Kim are sup-

ported by the Swiss National Science Foundation (SNSF) fellow-

ships P300P2 171212 and P2EZP2 168785, respectively. This work is

partially supported by the U. S. National Science Foundation (NSF)

grants IIS-1421435, CHS-1617236, IIS-1815070, and IIS-1815585.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jefrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geofrey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine Learn-
ing. In Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA, 265ś283.
http://dl.acm.org/citation.cfm?id=3026877.3026899

Satoshi Abet and Gabriel Marcu. 1994. A neural network approach for RGB to YMCK
color conversion. In TENCON’94. IEEE Region 10’s Ninth Annual International Con-
ference. Theme: Frontiers of Computer Technology. Proceedings of 1994. IEEE, 6ś9.

Azadeh Asadi. 2017. Freelance artist. http://www.azadehasadi.com/index.html. (2017).
Accessed: 2018-08-15.

Teun Baar, Hans Brettel, and Maria V Ortiz Segovia. 2015. Towards gloss control in
ine art reproduction. InMeasuring, Modeling, and Reproducing Material Appearance
2015, Vol. 9398. International Society for Optics and Photonics, 93980T.

Teun Baar, Sepideh Samadzadegan, Philipp Urban, and Maria V Ortiz Segovia. 2016.
Interrelation between gloss and texture perception of 2.5 D-printed surfaces. Elec-
tronic Imaging 2016, 9 (2016), 1ś6.

Vahid Babaei and Roger D Hersch. 2016. N-Ink printer characterization with barycen-
tric subdivision. IEEE Transactions on Image Processing 25, 7 (2016), 3023ś3031.

Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and
Wojciech Matusik. 2017. Color contoning for 3D printing. ACM Trans. Graph.
(SIGGRAPH) 36 (2017).

Seung-Hwan Baek, Incheol Kim, Diego Gutierrez, and Min H Kim. 2017. Compact
single-shot hyperspectral imaging using a prism. ACM Transactions on Graphics
(TOG) 36, 6 (2017), 217.

Farhan Baqai, Je-Ho Lee, Jan P Allebach, et al. 2005. Digital color halftoning. Signal
Processing Magazine, IEEE 22, 1 (2005), 87ś96.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel
Taubin. 1999. The ball-pivoting algorithm for surface reconstruction. Visualization
and Computer Graphics, IEEE Transactions on 5, 4 (1999), 349ś359.

Roy S. Berns, Brittany D. Cox, and Farhad Moghareh Abed. 2015. Wavelength-
dependent spatial correction and spectral calibration of a liquid crystal tunable
ilter imaging system. Appl. Opt. 54, 12 (Apr 2015), 3687ś3693. https://doi.org/10.
1364/AO.54.003687

Roy S Berns, Lawrence A Taplin, Philipp Urban, and Yonghui Zhao. 2008. Spectral
color reproduction of paintings. In Conference on Colour in Graphics, Imaging, and
Vision, Vol. 2008. Society for Imaging Science and Technology, 484ś488.

Jean-Yves Bouguet. 2008. A Release of a Camera Calibration Toolbox forMatlab. (2008).
Matthew Brown and David G Lowe. 2007. Automatic panoramic image stitching using

invariant features. International journal of computer vision 74, 1 (2007), 59ś73.
Alan Brunton, Can Ates Arikan, Tejas Madan Tanksale, and Philipp Urban. 2018. 3D

Printing Spatially Varying Color and Translucency. ACM Trans. Graph. 37, 4, Article
157 (July 2018), 13 pages. https://doi.org/10.1145/3197517.3201349

Alan Brunton, Can Ates Arikan, and Philipp Urban. 2015. Pushing the limits of 3d
color printing: Error difusion with translucent materials. ACM Transactions on
Graphics (TOG) 35, 1 (2015), 4.

Yongda Chen, Roy S Berns, and Lawrence A Taplin. 2004. Six color printer characteri-
zation using an optimized cellular Yule-Nielsen spectral Neugebauer model. Journal
of Imaging Science and Technology 48, 6 (2004), 519ś528.

Inchang Choi, Daniel S Jeon, Giljoo Nam, Diego Gutierrez, and Min H Kim. 2017. High-
quality hyperspectral reconstruction using a spectral prior. ACM Transactions on
Graphics (TOG) 36, 6 (2017), 218.

Antonino Cosentino. 2014. FORS Spectral Database of Historical Pigments in Diferent
Binders. 2 (09 2014), 57ś68.

George Cybenko. 1989. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2, 4 (01 Dec 1989), 303ś314. https:
//doi.org/10.1007/BF02551274

Hugh R. Davidson and Henry Hemmendinger. 1966. Color Prediction Using the Two-
Constant Turbid-Media Theory∗. J. Opt. Soc. Am. 56, 8 (Aug 1966), 1102ś1109.
https://doi.org/10.1364/JOSA.56.001102

Maxim Derhak and Mitchell Rosen. 2006. Spectral colorimetry using LabPQR: an in-
terim connection space. Journal of Imaging Science and Technology 50, 1 (2006),
53ś63.

Paul Apostolos Drakopoulos and Ganesh Subbarayan. 2002. Color printer characteri-
zation using optimization theory and neural networks. (Nov. 12 2002). US Patent
6,480,299.

Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel,
Alexander Wilkie, and Jaroslav Křivánek. 2017. Scattering-aware Texture Repro-
duction for 3D Printing. ACM Trans. Graph. 36, 6, Article 241 (Nov. 2017), 15 pages.
https://doi.org/10.1145/3130800.3130890

Willemijn S Elkhuizen, Tessa TW Essers, Boris Lenseigne, Clemens Weijkamp, Yu
Song, Sylvia C Pont, Jo M-P Geraedts, and Joris Dik. 2017. Reproduction of Gloss,
Color and Relief of Paintings using 3D Scanning and 3D Printing. (2017).

Willemijn S Elkhuizen, Boris AJ Lenseigne, Teun Baar, Wim Verhofstad, Erik Tempel-
man, Jo MP Geraedts, and Joris Dik. 2015. Reproducing oil paint gloss in print for
the purpose of creating reproductions of Old Masters. In Measuring, Modeling, and
Reproducing Material Appearance 2015, Vol. 9398. International Society for Optics
and Photonics, 93980W.

Willemijn S Elkhuizen, Tim Zaman, Wim Verhofstad, Pieter P Jonker, Joris Dik, and
Jo MP Geraedts. 2014. Topographical scanning and reproduction of near-planar
surfaces of paintings. InMeasuring, Modeling, and Reproducing Material Appearance,
Vol. 9018. International Society for Optics and Photonics, 901809.

Scott E Fahlman and Christian Lebiere. 1990. The cascade-correlation learning archi-
tecture. In Advances in neural information processing systems. 524ś532.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 271. Publication date: November 2018.

http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1364/AO.54.003687
https://doi.org/10.1364/AO.54.003687
https://doi.org/10.1145/3197517.3201349
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1364/JOSA.56.001102
https://doi.org/10.1145/3130800.3130890


Deep Multispectral Painting Reproduction via Multi-Layer, Custom-Ink Printing • 271:15

Robert W. Floyd and Louis Steinberg. 1976. An Adaptive Algorithm for Spatial
Greyscale. In Proceedings of Society for Information Displays, Vol. 17. 75ś77.

Jérémie Gerhardt and Jon Y Hardeberg. 2007. Controlling the error in spectral vec-
tor error difusion. In Color Imaging XII: Processing, Hardcopy, and Applications,
Vol. 6493. International Society for Optics and Photonics, 649316.

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. 32, 6,
Article 162 (Nov. 2013), 13 pages. https://doi.org/10.1145/2508363.2508377

Jean Hergel and Sylvain Lefebvre. 2014. Clean color: Improving multi-ilament 3D
prints. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 469ś478.

Francisco H. Imai, Mitchell R. Rosen, and Roy S. Berns. 2002. Comparative study of
metrics for spectral match quality. In Conference on Colour in Graphics, Imaging,
and Vision, Vol. 2002. Society for Imaging Science and Technology, 492ś496.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017. 5967ś5976. https://doi.org/10.1109/CVPR.2017.632

Wenzel Jakob, Eugene d’Eon, Otto Jakob, and Steve Marschner. 2014. A comprehensive
framework for rendering layered materials. ACM Transactions on Graphics (ToG)
33, 4 (2014), 118.

Henry R Kang and Peter G Anderson. 1992. Neural network applications to the color
scanner and printer calibrations. Journal of Electronic Imaging 1, 2 (1992), 125ś136.

Isaac Kauvar, Samuel J Yang, Liang Shi, Ian McDowall, and Gordon Wetzstein. 2015.
Adaptive color display via perceptually-driven factored spectral projection. ACM
Transactions on Graphics (TOG) 34, 6 (2015), 165.

Takayuki Kawaguchi, Norimichi Tsumura, Hideaki Haneishi, Yoichi Miyake, and M
Kouzaki. 1999. Vector error difusion method for spectral color reproduction. In
PICS. 394ś397.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

R. Victor Klassen, Reiner Eschbach, and Krishna Bharat. 1994. Vector error difusion
in a distorted colour space. In Proc. of IS&T 47th Annual Conference. 63ś65.

P. Kubelka and F. Munk. 1931. Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für
technische Physik 12 (1931), 593ś601.

D. J. Littlewood, P. A. Drakopoulos, and G. Subbarayan. 2002. Pareto-optimal Formu-
lations for Cost Versus Colorimetric Accuracy Trade-ofs in Printer Color Man-
agement. ACM Trans. Graph. 21, 2 (April 2002), 132ś175. https://doi.org/10.1145/
508357.508361

M Ronnier Luo, Guihua Cui, and B Rigg. 2001. The development of the CIE 2000
colour-diference formula: CIEDE2000. Color Research & Application 26, 5 (2001),
340ś350.

Gabriel Marcu and Kansei Iwata. 1993. RGB-YMCK color conversion by application
of the neural networks. In Color and Imaging Conference, Vol. 1993. Society for
Imaging Science and Technology, 27ś32.

Panagiotis Takis Metaxas. 1998. Optimal parallel error difusion dithering. In Color
Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts IV, Vol. 3648.
International Society for Optics and Photonics, 485ś495.

Peter Morovič, Ján Morovič, Jordi Arnabat, and Juan Manuel García-Reyero. 2012. Re-
visiting spectral printing: A data driven approach. In Color and Imaging Conference,
Vol. 2012. Society for Imaging Science and Technology, 335ś340.

Ole Norberg and Daniel Nyström. 2013. Extending color primary set in spectral vector
error difusion by multilevel halftoning. In Color Imaging XVIII: Displaying, Pro-
cessing, Hardcopy, and Applications, Vol. 8652. International Society for Optics and
Photonics, 86520M.

Victor Ostromoukhov. 1993. Chromaticity gamut enhancement by heptatone multi-
color printing. In IST/SPIE 1993 Symposium of Electronic Imaging: Science and Tech-
nology, Conf. on Device Independent Color Imaging and Imaging Systems Integration,
Vol. 1905. 139ś151.

Daniele Panozzo, Olga Diamanti, Sylvain Paris, Marco Tarini, Evgeni Sorkine, and Olga
Sorkine-Hornung. 2015. Texture Mapping Real-World Objects with Hydrographics.
Computer Graphics Forum (proceedings of EUROGRAPHICS Symposium on Geometry
Processing) 34, 5 (2015), 65ś75.

Théo Phan Van Song, Christine Andraud, and Maria V Ortiz Segovia. 2016a. Imple-
mentation of the four-lux model for spectral and color prediction of 2.5 D prints.
In NIP & Digital Fabrication Conference, Vol. 2016. Society for Imaging Science and
Technology, 26ś30.

Théo Phan Van Song, Christine Andraud, and Maria V Ortiz-Segovia. 2016b. Towards
spectral prediction of 2.5 D prints for soft-prooing applications. In Image Process-
ing Theory Tools and Applications (IPTA), 2016 6th International Conference on. IEEE,
1ś6.

Théo Phan Van Song, Christine Andraud, and Maria V Ortiz-Segovia. 2017. Spec-
tral predictions of rough ink layers using a four-lux model. In Color and Imaging
Conference, Vol. 2017. Society for Imaging Science and Technology, 251ś257.

Tim Reiner, Nathan Carr, Radomír Měch, Ondřej Št’ava, Carsten Dachsbacher, and
Gavin Miller. 2014. Dual-color mixing for fused deposition modeling printers. In
Computer Graphics Forum, Vol. 33. Wiley Online Library, 479ś486.

Mitchell R Rosen and Maxim W Derhak. 2006. Spectral gamuts and spectral gamut
mapping. In Spectral Imaging: Eighth International Symposium on Multispectral
Color Science, Vol. 6062. International Society for Optics and Photonics, 60620K.

Mitchell R Rosen, Edward F Hattenberger, and Noboru Ohta. 2004. Spectral redun-
dancy in a six-ink ink jet printer. Journal of Imaging Science and Technology 48, 3
(2004), 194ś202.

Romain Rossier. 2013. Framework for Printing with Daylight Fluorescent Inks. Ph.D.
Dissertation. Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne.

Claude Rozé, Thierry Girasole, and Anne-Gaelle Taforin. 2001. Multilayer four-lux
model of scattering, emitting and absorbing media. Atmospheric environment 35,
30 (2001), 5125ś5130.

Christian Schüller, Daniele Panozzo, Anselm Grundhöfer, Henning Zimmer, Evgeni
Sorkine, and Olga Sorkine-Hornung. 2016. Computational thermoforming. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 43.

Pitchaya Sitthi-Amorn, Javier E. Ramos, Yuwang Wangy, Joyce Kwan, Justin Lan, Wen-
shou Wang, and Wojciech Matusik. 2015. MultiFab: A Machine Vision Assisted
Platform for Multi-material 3D Printing. ACM Trans. Graph. 34, 4, Article 129 (July
2015), 11 pages. https://doi.org/10.1145/2766962

Chang-Hwan Son, Hyung-Min Park, and Yeong-Ho Ha. 2011. Improved color separa-
tion based on dot-visibility modeling and color mixing rule for six-color printers.
Journal of Imaging Science and Technology 55, 1 (2011), 10505ś1.

Eric J Stollnitz, Victor Ostromoukhov, and David H Salesin. 1998. Reproducing color
images using custom inks. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM, 267ś274.

Stratasys. 2016. Stratasys J750 the ultimate full-color multi-material 3D printer. http:
//www.stratasys.com/3d-printers/production-series/stratasys-j750. (2016). [Online;
accessed 15-October-2016].

3D Systems. 2013. ProJet 5500X Multi-Material 3D Printer. (2013). http://www.
3dsystems.com/iles/projet-5500x-1113-usen-web.pdf

Lawrence A Taplin and Roy S Berns. 2001. Spectral color reproduction based on a
six-color inkjet output system. In Color and Imaging Conference, Vol. 2001. Society
for Imaging Science and Technology, 209ś213.

Shoji Tominaga. 1996. Color control using neural networks and its application. In Color
Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts, Vol. 2658.
International Society for Optics and Photonics, 253ś261.

Shoji Tominaga. 1998. Control scheme for printers using more than three color inks.
In Electronic Imaging: Processing, Printing, and Publishing in Color, Vol. 3409. Inter-
national Society for Optics and Photonics, 286ś294.

Shohei Tsutsumi, Mitchell Rosen, and Roy Berns. 2008. Spectral color reproduction
using an interim connection space-based lookup table. Journal of Imaging Science
and Technology 52, 4 (2008), 40201ś1.

Philipp Urban and Roy S Berns. 2011. Paramer mismatch-based spectral gamut map-
ping. IEEE transactions on image processing 20, 6 (2011), 1599ś1610.

Gunter Wyszecki and Walter Stanley Stiles. 1982. Color Science. Vol. 8. Wiley New
York.

Songhua Xu, Haisheng Tan, Xiantao Jiao, Francis Lau, and Yunhe Pan. 2007. A generic
pigment model for digital painting. In Computer Graphics Forum, Vol. 26. Wiley
Online Library, 609ś618.

Yizhong Zhang, Yiying Tong, and Kun Zhou. 2016. Coloring 3D Printed Surfaces by
Thermoforming. IEEE Transactions on Visualization and Computer Graphics (2016).

Yizhong Zhang, Chunji Yin, Changxi Zheng, and Kun Zhou. 2015. Computational
hydrographic printing. ACM Transactions on Graphics (TOG) 34, 4 (2015), 131.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 271. Publication date: November 2018.

https://doi.org/10.1145/2508363.2508377
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1145/508357.508361
https://doi.org/10.1145/508357.508361
https://doi.org/10.1145/2766962
http://www.stratasys.com/3d-printers/production-series/stratasys-j750
http://www.stratasys.com/3d-printers/production-series/stratasys-j750
http://www.3dsystems.com/files/projet-5500x-1113-usen-web.pdf
http://www.3dsystems.com/files/projet-5500x-1113-usen-web.pdf

	Abstract
	1 Introduction
	2 Previous Work
	3 Overview
	4 Hardware Setup
	4.1 Spectral Acquisition
	4.2 Printing and Inks

	5 Modeling Spectral Reproduction
	5.1 Ink-Stack Dataset
	5.2 Spectral Prediction Model
	5.3 Layout Prediction Model
	5.4 Spectral Vector Error Diffusion
	5.5 Training Protocol

	6 Results and Evaluations
	6.1 Model Evaluation
	6.2 Painting Reproduction Evaluation
	6.3 Run-time Performance
	6.4 Limitations and Future Work

	7 Conclusions
	References

