
An Asynchronous Material Point Method
Yuanming Hu∗ and Yu Fang∗

Tsinghua University
∗ equal contribution, {yuanmhu,squarefk}@gmail.com

Figure 1: Our Asynchronous Material Point Method (AsyncMPM) leads to e�cient simulation of deformable materials. The
rolling snowball scene (left) is accelerated by 4.3×, while the shooting armadillo scene (right) is accelerated by 6.1×. The e�-
ciency is achieved by using a hierachy of di�erent time steps at di�erent regions, so that most particles are not updated unless
necessary. Only red and yellow (bu�er) particles are involved in updating.

ABSTRACT
We propose a novel asynchronous time integration scheme for the
Material Point Method (MPM), which o�ers temporal adaptivity
when objects of di�erent sti�ness or velocity coexist. We show via
multiple test scenes that our asynchronous MPM leads to 6× speed
up over traditional synchronous MPM without sacri�cing accuracy.

CCS CONCEPTS
• Computing methodologies → Physical simulation;

KEYWORDS
Physically based animation, material point method, asynchronous
time integration

ACM Reference format:
Yuanming Hu∗ and Yu Fang∗. 2017. An Asynchronous Material Point Method.
In Proceedings of SIGGRAPH ’17 Posters, Los Angeles, CA, USA, July 30 - Au-
gust 03, 2017, 2 pages.
DOI: 10.1145/3102163.3102170

1 INTRODUCTION
Since the �rst adoption of the Material Point Method (MPM) [Stom-
akhin et al. 2013] in computer graphics, its expressiveness and
elegance has drawn much attention from the simulation commu-
nity. However, e�ciency has been an unsolved problem of MPM.
Though implicit MPM is generally considered more stable, when

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’17 Posters, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5015-0/17/07.
DOI: 10.1145/3102163.3102170

combined with large time steps, it usually leads to large numeric
errors, resulting in undesired dissipative simulation.

In comparison, explicit MPM is easier to implement and to opti-
mize. Explicit MPM walks around the need for second-order deriva-
tives of potential energy with respect to the deformation gradient,
a complex 4-th order tensor required by the implicit version. Also,
though fewer iterations are needed in implicit MPM, the sparse
system formed in the implicit version is actually quite “dense”, con-
taining up to 343 non-zero terms, which severely slow it down.
Moreover, to combine multiple materials such as [Klár et al. 2016;
Stomakhin et al. 2013], putting together the implicit systems is a
non-trivial task. All these considerations underscore the need to
better exploiting explicit MPM. To speed it up while retaining its
simplicity, we developed an asynchronous version of explicit MPM,
namedAsyncMPM, where temporal adaptivity is o�ered so that com-
putational resource is focused on sti� regions and higher e�ciency
is thereby achieved. Two important components of AsyncMPM
are partial particle update and the scheduler which determines the
particle subset and ∆t for updating.

2 PARTIAL PARTICLE UPDATE
The key observation here, is that when using explicit MPM, the
time step is limited by sti�est or fastest part from the whole scene,
while requiring the rest of the scene to be updated as frequently
as these “sti�” parts is wasteful in most simulations. Ideally we
should update di�erent regions with di�erent frequency which is
the lowest one required for stability and accuracy.

Unlike [Thomaszewski et al. 2008] where a mesh is used, the
mesh-free treatment of particles makes partial update in MPM
challenging. In AsyncMPM, grids are grouped into larger blocks
B = {B1,B2, ...}, and each particle p ∈ P belongs to exactly one
block containing it. Particles contained in block b are denoted as Pb .
We only update particles in Bupdating, a usually very small subset



SIGGRAPH ’17 Posters, July 30 - August 03, 2017, Los Angeles, CA, USA Yuanming Hu∗ and Yu Fang∗

Figure 2: Left: Only (colliding) particles within updating
(red) blocks are updated. Particles in surrounding bu�er
blocks (yellow) are rasterized but not updated. Most parti-
cles are not updated (grey), leading to superior e�ciency.
Middle: darker regions are updated with exponentially
lower frequency. Right: particle category is the same as con-
taining block category (updating/bu�er/inactive).

of B containing sti� or fast-moving particles. Although particles
outside Bupdating will not be updated, the force of one surrounding
Bupdating will a�ect those inside. Therefore, it is necessary to also
rasterize particles in blocks around them,Bbu�er, onto the grid. Fig. 2
provides an illustration of di�erent types of blocks and particles.
On each particle, we additionally store tp , standing for the last time
when it was updated. When integrating its position or deformation
gradient, we use ∆t = t − tp , and then set tp ← t .

3 ASYNCHRONOUS SCHEDULING
Central to our asynchronous simulator is the scheduler, which
determines frequency of block update adaptively. We use a hierar-
chy of time steps at di�erent blocks, ∆tb = Mb × tε , where Mb is
powers-of-two integer multipliers and tε is the base time step. ∆tb
is constrained by two major factors:

Particle sti�ness. Sti�er particles should be given more frequent
update for stability. We follow [Thomaszewski et al. 2008] and use

ps =
⌊
kp

/√
λp + 2µp

⌋
/tε ,

where kp is a constant related to particle volume and λp and µp are
lamé parameters. The block ∆t multiplier limited by such sti�ness
is naturally Ms

b = minp∈Pb {ps }.

Particle relative velocity & “CFL” condition. CFL condition is com-
monly used for limiting time steps for �uid simulation. However, in
MPM, we care more about relative velocity: a snowball in fast tran-
sitional motion should not be limited by CFL, while two snowballs
colliding with each other should be, so that artifacts like penetra-
tion are avoided. Therefore, for each block, the maximum relative
velocity within its surrounding 3 × 3 × 3 block neighbourhood
vb,relative is calculated. Additional careful treatment is done near
the boundary. Finally, per-block maximum ∆t multiplier limited by
velocity is simply de�ned as Mv

b =
⌊
cp/vb,relative

⌋
/tε . In summary,

the block ∆t multiplier is Mb = min{Ms
b ,M

v
b }.

When neighbouring blocks has too di�erent Mb , the numeric
error will be out of control. Therefore, we limit Mb of neighbouring
blocks to be graded. Looping over all particles and calculate Mb
will clearly make AsyncMPM lose its e�ciency which comes from
partial update, so we only do it incrementally on active blocks. The
whole AsyncMPM cycle is shown in Algorithm. 1.

Algorithm 1: Outline of the AsyncMPM Algorithm.
while t < t�nal do

1. Max. allowed ∆t multiplier M ′ = POT (minb ∈B {Mb })
//POT (n) stands for the largest power of two below n;

2. Actual time step multiplier M = M ′ −T mod M ′;
3. T → T +M, t = Ttε ;
4. Bupdating = {T mod Mb = 0|b ∈ B};
5. Bbu�er = blocks surrounding Bupdating;
6. Rasterize p ∈ Pb ,b ∈ Bupdating ∩ Bbu�er;
7. Update each p ∈ Pb ,b ∈ Bupdating by ∆t = t − tp
(position, deform. grad.), and set tp ← t (with boundary
cond.);

8. Update Mb ,b ∈ Bupdating ∩ Bbu�er;

4 IMPLEMENTATION AND RESULTS
We use grid blocks of size 82 (2D) or 83 (3D). In each block, an array
storing pointers to its particles is used to maintain Pb . Our code is
implemented in C++ based on the open-source library Taichi[Hu
2017]. AsyncMPM is now part of Taichi and the code is freely
available at https://github.com/yuanming-hu/taichi/tree/ampm.

We implemented our novel method and its traditional synchro-
nous version in both 2D and 3D, and compared our method with
its traditional synchronous counter part. We also implemented im-
plicit MPM in 2D, and found an careful implementation of explicit
MPM combined with APIC [Jiang et al. 2015] leads to even faster
simulation in our settings, therefore we omit the comparison with
3D implicit MPM. Various test scenes are evaluated on to demon-
strate the speed up. Simulation results are demonstrated in the
supplemental video. 1.9 − 6.1× speed up over traditional asyn-
chronous MPM is observed, as listed in Table 1. All experiments
were done on an Intel i5-4278U (2.6GHz) CPU and 8GB of memory.

Scene Grid Particles Sync. Async. speed up
Rolling snowball 320 × 180 19, 222 6.9s 3.5s 1.9×

Bullet into sponge 256 × 256 111, 036 11.2s 3.7s 3.0×
Rolling snowball 255 × 255 × 255 496, 790 652.3s 153.2s 4.3×

Shooting armadillo 255 × 255 × 255 141, 135 125.3s 20.6s 6.1×
Bunny smashing 127 × 127 × 127 33, 553 26.6s 8.6s 3.1×

Snowball collision 255 × 255 × 255 143, 801 526.2s 145.8s 3.6×
Table 1: Settings and time per frame of our test scenes.

REFERENCES
Yuanming Hu. 2017. Taichi - Physically based computer graphics library, http://taichi.

graphics. (2017).
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.

2015. The a�ne particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 51.

Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chen-
fanfu Jiang, and Joseph Teran. 2016. Drucker-prager elastoplasticity for sand
animation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 103.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A material point method for snow simulation. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 102.

Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2008. Asynchronous
cloth simulation. In Computer Graphics International, Vol. 2.

https://github.com/yuanming-hu/taichi/tree/ampm
http://taichi.graphics
http://taichi.graphics

	Abstract
	1 Introduction
	2 Partial Particle Update
	3 Asynchronous Scheduling
	4 Implementation and Results
	References

